

Photographed by Nicéphore Niépce, 1826

Various types of lenses

Adjustable depth of field

Controlled exposure

Complex lighting, media

Intricate geometric structure

Diverse material appearances

Object representation

Light transport

Object representation

Light transport

Digital signal processing

Object representation

Light transport

Digital signal processing

Human visual system

High complexity!

Incident Illumination at P

Monte Carlo path tracing

• Image synthesis by tracing light paths

Integrating over several domains

Monte Carlo path tracing —→ sampling

Image space

Estimate radiance at sample locations

Reconstruct image

Image space

Visible spectrum

Monte Carlo path tracing —→ sampling

Image space

Visible spectrum

Aperture

Exposure time

Monte Carlo path tracing —→ sampling

Image space

Visible spectrum

Aperture

Exposure time

Material reflectance functions

Direct illumination

Indirect illumination

Sampling Strategies for Efficient Image Synthesis

Kartic Subr

Monte Carlo path tracing —→ sampling

Image space

Visible spectrum

Aperture

Exposure time

Material reflectance functions

Direct illumination

Indirect illumination

Domains of interest

Material reflectance functions

Indirect illumination

1. Bandwidth prediction – depth of field simulation

- 1. Bandwidth prediction depth of field simulation
- 2. Steerable importance functions direct distant illumination estimation

- 1. Bandwidth prediction depth of field simulation
- 2. Steerable importance functions direct distant illumination estimation
- 3. Statistical hypotheses testing assessing MC estimators

Questions?

Questions?

• Claims are true? Says who?

Bandwidth Prediction for Efficient Depth of Field Rendering

F. Durand, N. Holzschuch, F. Sillion, C. Soler, K. Subr

Different Phenomena

Depth Of Field

Depth Of Field

Specular Surfaces

Soft Shadows

Combinations

Need for bandwidth prediction

The 2D local light field

The 4D local light field

Radiance along ray (s,t,u,v)

The 4D local light field

• Reduce to 2D – assume isotropy

Local Light Field Density Plot

On a 1D area emitter

[Durand et al. 2005]

Fourier Transform of Local Light Field

- Spatial: sinc
- Angular: Dirac delta

Spatial frequency

[Durand et al. 2005]

Spatial and Angular Frequencies

Hard Shadows
High Spatial Frequencies

Soft Shadows Low Spatial Frequencies

Decreasing Angular Frequencies (left to right)

[Ramamoorthi and Hanrahan 2001]

Transport Phenomena- Summary

	Ray / Fourier space	Effect
Transport	Shear / Shear	
Occlusion	Multiplication/Convolution	Adds spatial frequencies
Reflection	Convolution/Multiplication	Removes angular frequencies
Curvature	Shear / Shear	

Transport Phenomena- Summary

	Ray / Fourier space	Effect
Transport	Shear / Shear	
Occlusion	Multiplication/Convolution	Adds spatial frequencies
Reflection	Convolution/Multiplication	Removes angular frequencies
Curvature	Shear / Shear	

Suboptimal but conservative

Suboptimal but conservative

Depth of field: Fourier domain

Image/aperture bandwidth

Image/aperture bandwidth

Image-space frequencies

Image space sampling density

Image samples

Aperture-space bandwidth

 Expected variance in radiance estimates at each pixel

Allocation proportional to variance

Image/aperture bandwidth

Similar cost

Without bandwidth prediction

Using bandwidth prediction

Similar quality

Speedup = #Primary rays using existing technique for similar range of noise #Primary rays using bandwidth prediction

Questions?

[Ramamoorthi & Hanrahan 2001]

An efficient representation for irradiance environment maps. SIGGRAPH 2001.

[Durand et al. 2005]

F.Durand, N.Holzschuch, C.Soler, F.Sillion. A frequency analysis of light transport. SIGGRAPH 2005.

Steerable Importance Sampling for Efficient Direct Distant Illumination

Kartic Subr

James Arvo

Review: Importance sampling

$$\int_{\mathcal{D}} f(x) dx \approx \frac{1}{N} \int_{\mathcal{D}} g(x) dx \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}$$

where
$$x_i \sim g(x)$$

Review: Importance sampling

$$\int_{\mathcal{D}} f(x) dx \approx \frac{1}{N} \int_{\mathcal{D}} g(x) dx \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}$$

Which is a better importance function, g or h?

Review: Importance sampling

$$\int_{\mathcal{D}} f(x) dx \approx \frac{1}{N} \int_{\mathcal{D}} g(x) dx \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}$$

Which is a better importance function, g or h? What if f(x) changes?

Review: Steerable functions

Transformed functions = linear combination of basis

Direct, distant illumination

Reflected radiance along direction ω_o

$$\int\limits_{\mathcal{S}^2} \frac{V(x,\omega_i)\rho(\omega_o,\omega_i)L(\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)\rho(\omega_i)L(\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)\rho(\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega_i)}{\sum_{\mathcal{S}^2} \frac{V(x,\omega$$

Direct, distant illumination

Reflected radiance along direction ω_o

$$\int_{\mathcal{S}^2} \frac{V(x,\omega_i)
ho(\omega_o,\omega_i)}{L(\omega_i) \max{(\omega_i.n,\ 0)}} \,\mathrm{d}\omega_i$$
ility Reflectance Incident Clamped Radiance Cosine Importance Function

Domain Partitioning

Partition into Spherical Triangles

$$(\int + \int + \int + \dots) \gamma(x, \omega_i, \omega_r, \mathbf{n}) \ d\omega_i$$

Change of variables – 1

Change of variables – 2

Novel parameterization

Novel parameterization

Is this steerable?

$$g_n(\mathbf{u}) = L(\mathbf{u}) \max(\mathbf{n}.\mathbf{u}, 0)$$

$$g_n(\mathbf{u}) = L(\mathbf{u}) \max(\mathbf{n}.\mathbf{u}, 0)$$

Represent using SH bases 8 coefficients – good approximation [Ramamoorthi & Hanrahan]

$$<$$
a(n), $Y(u)>$ Rotated coefficients Spherical Harmonic bases

$$g_n(u) = L(u) \max(n.u, 0)$$

$$< a(n), Y(u) >$$

$$g_n(u) = < a(n), L(u) Y(u) >$$
Precomputed

Precompute and store (per vertex)

Function of normal

 $\langle a(n), L(u) Y(u) \rangle$

Drawing samples

Triangle selection

Stratified sampling of selected triangle

Drawing samples

- Triangle selection
 - proportional to function integral within triangle
 - O(log N) cost (N triangles)

- Stratified sampling of selected triangle
 - according to linear function
 - O(1) cost

Results

Environment map

Samples (green)

Input Output

Results: Reduced variance

Results: Images generated

Questions?

[Ramamoorthi & Hanrahan]

An efficient representation for irradiance environment maps. SIGGRAPH 2001.

[Teo]

Theory and applications of steerable functions. PhD thesis, 1998.

[W. Freeman]

Steerable filters and the local analysis of image structure. PhD thesis, 1992.

Assessing Monte Carlo Estimators: Applications in Image Synthesis

Kartic Subr

James Arvo

• Simple example – Estimating the Mean

Simple example – MC Estimator for the Mean

- Sample domain randomly (unif.)
- Average function-values at sample locations

Simple example – MC Estimator for the Mean

- Sample domain non-uniformly
- Average weighted functionvalues at sample locations
- 'Compensate' for sampling

- Repeat process
- Obtain several estimates
- Histogram of Estimates

Assessing Estimators

Assessing Estimators

Typically compare 1st and/or 2nd order statistics i.e. Mean and Variance

Assessing Estimators- Image Synthesis

- Cost
 - time
 - number of samples
- Mean
 - difference images
 - inspecting convergence plots
- Variance
 - inspecting image noise

Assessing Estimators- Image Synthesis

- Drawbacks (current techniques)
 - subjective
 - weakly quantitative
 - comparing variance plots- large number of estimates
 - difficult, often impossible, to automate

Typical Classes of MC Estimators in Image Synthesis

Reduced Variance, Unbiased Estimators

Reduced Variance, Biased Estimators

Verifying Absence of Bias

1. Estimator vs Analytical Solution

Verifying Absence of Bias

2. Estimator vs Trusted Estimator

Verify Variance Acceptability

3. Verify variance acceptibility- Estimator vs Constant

Reduced Variance, Unbiased Estimators

Reduced Variance, Biased Estimators

Verify Variance Reduction or Compare Variances

4. Estimator vs Estimator

Sample: Collection of observations

Review: Hypothesis Testing

Review: One-Sample vs Two-Sample Tests

Review: Rejecting the Null-Hypothesis

- Find boundaries of rejection region
- Compute F(y) using the sample 'y'
- Reject if F(y) falls inside rejection region

 $C_{\alpha} = G^{-1}(\alpha)$ where G(s) is the CDF of F(s)

Tests Performed and their Test Statistics

One-Sample Tests

Two-Sample Tests

Test for Mean

Test for Bias against Constant

Student's t-distribution

Compare Means of Two Estimators

Student's t-distribution

Test for Variance

Test that Variance is Bounded

Chi-Square distribution

Compare Variances of Two Estimators

F-Distribution

Setting up Hypothesis Tests

- Careful
 - Sensitive to distribution
 - most tests for normally distributed data

- Testing Estimators in Image Synthesis
 - Compare secondary instead of primary estimators

Results: Comparing Means and Variances

Uniform Hemisphere Uniform Proj-Hemisph. Uniform Area on Light Uniform Solid Angle Mean - red bars Variance -blue bars $\alpha = 0.1$

Results: Comparing Means and Variances

Uniform Hemisphere

Uniform Proj-Hemisph.

Uniform Area on Light

Uniform Solid Angle

BRDF Sampling

Results – BRDF Sampling

2-Sample Goodness-of-fit (Kolmogorov-Smirnov)

 $E(\mathbf{x}) = \int_{Area(\triangle)} L(\mathbf{x}, \mathbf{z}) \frac{\mathbf{n} \cdot \mathbf{z}}{\|\mathbf{z}\|} \frac{\mathbf{n}_{\triangle} \cdot \mathbf{z}}{\|\mathbf{z}\|^3} d\mathbf{y}$ Irradiance Light Source Radiance $\mathbf{z} = \mathbf{x} - \mathbf{y}$

$$E(\mathbf{x}) = \int_{Area(\triangle)} L(\mathbf{x}, \mathbf{z}) \frac{\mathbf{n} \cdot \mathbf{z}}{\|\mathbf{z}\|} \frac{\mathbf{n}_{\triangle} \cdot \mathbf{z}}{\|\mathbf{z}\|^3} d\mathbf{y}$$

- Create Erroneous Estimators
 - Omitting the cosine term for shading

$$E(\mathbf{x}) = \int_{Area(\triangle)} L(\mathbf{x}, \mathbf{z}) \frac{\mathbf{n} \cdot \mathbf{z}}{\|\mathbf{z}\|} \frac{\mathbf{n}_{\triangle} \cdot \mathbf{z}}{\|\mathbf{z}\|^3} d\mathbf{y}$$

- Create Erroneous Estimators
 - Omitting the cosine term for shading
 - Non-uniform sampling of illuminaire

$$E(\mathbf{x}) = \int_{Area(\triangle)} L(\mathbf{x}, \mathbf{z}) \frac{\mathbf{n} \cdot \mathbf{z}}{\|\mathbf{z}\|} \frac{\mathbf{n}_{\triangle} \cdot \mathbf{z}}{\|\mathbf{z}\|^3} d\mathbf{y}$$

- Create Erroneous Estimators
 - Omitting the cosine term for shading
 - Non-uniform sampling of illuminaire
 - Omitting change of variables

Results – Error Detection

Without Cosine

Non-uniform Sampling of Light Source

Reference

Incorrect Change of Variables

Results – Error Detection

Questions?

[Fisher 59]

Statistical Methods and Scientific Inference

[Neyman & Pearson 28]

On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference

[Freund & Walpole 87]

Mathematical Statistics

Contributions – 1

Bandwidth prediction for efficient depth of field

Contributions – 2

Steerable importance sampling

Contributions – 3

Framework to assess Monte Carlo estimators

Questions?

Acknowledgements

- Kitchen scene images Cyril Soler
- INRIA, Grenoble
- James Arvo, Fredo Durand, Nicolas Holzschuch, Francois Sillion

Incident Illumination at P

Monte Carlo integration

$$\int_{\mathcal{H}} L(\omega) \, d\omega \approx \frac{1}{N} \sum_{i=1}^{N} L(\omega_i)$$

ullet ω_i are distributed uniformly in ${\cal H}$

Monte Carlo integration

$$\int_{\mathcal{H}} L(\omega) \, d\omega \approx \frac{1}{N} \sum_{i=1}^{N} L(\omega_i)$$

 $\cdot \omega_i$ are distributed uniformly in ${\cal H}$

Preprocess

- Partition sphere of directions into a set of spherical triangles
 - Compute and store vector w at each vertex
 - Compute and store vector W for each triangle
- Construct hierarchy of weights(no higher order terms)

Sample Generation

• Tree traversal to select a triangle given a normal **n**

Frequency Transport

