otogf&bhed 'by Niééphore Niépce,

1826






Various types of lenses




Adjustable depth of field




Controlled exposure




Complex lighting, media

;,k




Intricate geometric structure




Diverse material appearances




Physically based image synthesis




Object representation

Physically based image synthesis




Object representation Light transport

Physically based image synthesis




Object representation Light transport

Physically based image synthesis
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Object representation Light transport

Physically based image synthesis




Light transport
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Light transport




Light transport




Light transport




Light transport




High complexity!

e .
= = — N N
4 \
| \
| " DN
\ |
) Interreflection
b p— / Refraction
V
y - = Occlusion
Dispersion




Incident Illumination at P

/ Radiance L(w) W
m rad

! |




Monte Carlo path tracing

Image synthesis by tracing light paths

Integrating over several domains



Monte Carlo path tracing — sampling

Image space

| Estimate radiance
' at sample locations

=
ﬁ

Reconstruct image



Monte Carlo path tracing — sampling

Image space  Visible spectrum




Monte Carlo path tracing — sampling

S—

Image space  Visible spectrum Aperture Exposure time
. » .
- - -




Monte Carlo path tracing — sampling

L

S—

Image space  Visible spectrum Aperture Exposure time

S LS S
" =

e

Material reflectance Direct illumination Indirect illumination
functions




Sampling Strategies

for
Efficient Image Synthesis

Kartic Subr



Monte Carlo path tracing — sampling

L

S—

Image space  Visible spectrum Aperture Exposure time

S LS S
" =

e

Material reflectance Direct illumination Indirect illumination
functions




Domains of interest

Material reflectance Direct illumination Indirect illumination
functions



Thesis



Thesis

1. Bandwidth prediction — depth of field simulation



Thesis

1. Bandwidth prediction — depth of field simulation

2. Steerable importance functions — direct distant
illumination estimation



Thesis

1. Bandwidth prediction — depth of field simulation

2. Steerable importance functions — direct distant
illumination estimation

3. Statistical hypotheses testing — assessing MC
estimators



Questions ?



Questions ?

Claims are true ? Says who ?



Bandwidth Prediction

for
Efficient Depth of Field Rendering

E Durand, N. Holzschuch, E Sillion, C. Soler, K. Subr



OOOH, LOOK
AT THE BLLURRY
FLOWERS!

1.3X CROP FACTOR
68MM, F2.8




Different Phenomena

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

1.3X CROP FACTOR
68MM, F2.8




Depth Of Field

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

1.3X CROP FACTOR
68MM, F2.8




Depth Of Field

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

focus. Cool.
-Sample image
densely

n..“‘

1.3X CROP FACTOR
68MM, F2.8




Specular Surfaces

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

Ih focus and specular.
Super Cool !
Sample mare .. more,

ey

1.3X CROP FACTOR
68MM, F2.8




Soft Shadows

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

1.3X CROP FACTOR
68MM, F2.8




Combinations

OOOH, LOOK
AT THE BLLURRY
FLOWERS!

1.3X CROP FACTOR
68MM, F2.8




Need for bandwidth prediction

Help!
We need




The 2D local light field

spacel




The 4D local light field

Radiance along ray (s,t,u,v)




The 4D local light field

Reduce to 2D — assume isotropy




Local Light Field Density Plot

On a 1D area emitter

Angle

Space

[Durand et al. 2005]



Fourier Transform of Local Light Field

Spatial: sinc

Angular: Dirac delta

Angular frequency

Spatial frequency
[Durand et al. 2005]



Spatial and Angular Frequencies

Hard Shadows Soft Shadows
Low Spatial Frequencies

High Spatial

[Ramamoorthi and Hanrahan 2001]



Transport Phenomena- Summary

Ray / Fourier space Effect

Transport Shear / Shear
Occlusion | Multiplication/Convolution | Adds spatial frequencies

Reflection | Convolution/Multiplication | Removes angular frequencies

Curvature Shear / Shear



Transport Phenomena- Summary

Ray / Fourier space Effect

Transport Shear / Shear
Occlusion | Multiplication/Convolution A Adds spatial frequencies

Reflection | Convolution/Multiplication | Removes angular frequencies

Curvature Shear / Shear



Frequency Transport

— Sensor Light Source

-

-

lane in Focus

Occluder




Frequency Transport

— Sensor Light Source

Lens 9
Initialize
Frequency

-

lane in Focus

Occluder




Frequency Transport

— Sensor Light Source

Lens Q
%sport
’ Shear by

» distance

lane in Focus

Occluder




Frequency Transport

— Sensor Light Source

Lens 9
»
Occlusion

lane in Focus .
Convolution with occluder

Occluder




Frequency Transport

— Sensor Light Source

-

-

lane in Focus

near by Occluder

distance




Frequency Transport

— Sensor Light Source

-

lane in Focus .

Occluder

flection
ature Shear
+
multiplication with BRDF
spectrum



Frequency Transport

— Sensor Light Source

-

lane in Focus .
»

Transport
Shear by
distance

Occluder



Frequency Transport

— Sensor Light Source

-

lane in Focus .
»

Lens
multiplication
with lens
spectrum

Occluder



Suboptimal but conservative

— Sensor Light Source

Lens O

Multiply(L) lane in Focus /

Shear(d3

Assume infinite
incoming
bandwidth



Suboptimal but conservative

— Sensor

Lens

MultiEIx(L) lane in Focus

Shear(d3

Assume infinite
incoming
bandwidth



Depth of field: Fourier domain

Scene Point

Transport
e Shear along angular domain
Occlusion

Occluder y - - (X) — . - Conuoytion with
= f 2 occluder's spectrum
!

Aperture Filter
Multiplication with
aperture's response
4| spectrum

Plane in Focus ¢

oD

. Image Sampling
Camera Sensor ¥ - . - - Extraction of
—_— 95th percentile

View Extraction
Projection onto
angular axis




Image/aperture bandwidth

Image Aperture/thin lens

\
N
N
N
N
N
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N
BN
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Image/aperture bandwidth

Image Aperture/thin lens

Record max Record max

frequency at frequency at
image plane aperture




Image-space frequencies

Image space sampling density Image samples



Aperture-space bandwidth

. &

Expected variance in
radiance estimates at
each pixel

Allocation
proportional to
variance



Image/aperture bandwidth




Without
bandwidth

prediction

Using
bandwidth
prediction

Similar cost




Similar quality

Speedup = 17.3

#Primary rays using existing technique
#Primary rays using bandwidth prediction

Speedup = for similar range of noise



Questions ?

[Ramamoorthi & Hanrahan 2001]

An efficient representation for irradiance environment maps.
SIGGRAPH 2001.

[Durand et al. 2005]

EDurand, N.Holzschuch, C.Soler, ESillion. A frequency analysis
of light transport. SIGGRAPH 2005.



Steerable Importance Sampling

for

Efficient Direct Distant Illumination

Kartic Subr James Arvo



Review: Importance sampling

D/ fla) dz ~ < D/ glw) do iﬁi))

where x; ~ g(x)



Review: Importance sampling

b?//////
SR Ea
$ N
glg
| D
™
=[]
S
o)
G
)
/D
— |=
2
&
ks
&
S
/D

Which is a better importance function, g or h ?



Review: Importance sampling

=\ \\

What if f(x) changes ?



Review: Steerable functions

Transformed functions = linear combination of basis

Transformed Function Inner Product

g () = <s(T), b(x) >

bases

Transformation-dependent coefficients



Direct, distant illumination

Reflected radiance along direction w,

/V(fﬂawz‘)ﬁ(wmwi)L(wz‘) max (w;.n, 0) dw;

Visibility ~ Reflectance Incident Clamped
Function Radiance Cosine



Direct, distant illumination

Reflected radiance along direction w,

/V(fnjwi)p(wmwi)lj(wi)ma}{ (w;-m, 0) dw;

| \

82

Incident Clamped
Radiance = Cosine
Importance
Function



Domain Partitioning

/7($,wi,wr, n) dw;

£

%artition into Spherical Triangles




Change of variables — 1

Spherical to planar triangle

So(wia nA)

Planar triangle normal



Change of variables — 2

Spherical to planar triangle

v

So(wi? nA)
2 R

k>

Unit square to triangle parameterization

’J(p())pl)’
N

Jacobian of Parameterization



Novel parameterization

7($7wiawT7n) Sﬁ(po,pl,ﬂa) ‘J(poapl)’ de dpl

BRDF
Incident \
llumination
Clamped
Cosine

S
o _




Novel parameterization

1 1
//'}/(ﬂf,wi,wr,n) @(pO,pl,nA) ‘J(p())pl)’ de dpl
0O O

Derive parameterization so that
Jacobian ~ Illumination * Clamped Cosine

Clamped
Cosine



Steerable importance function

Oriented /\
clamped-cosine lobe

Steering function

4 p

et — X

\ Steerable Importance Function Y,

Piecewise-linear

approximation
of illumination from

env map




Steerable importance function

Oriented /\
clamped-cosine lobe

Steering function

a h

| = X

\ Steerable Importance Function Y,

Piecewise-linear

approximation
of illumination from

env map

Is this steerable?



Steerable importance function

g (u) = L(u) max(n.u, 0)



Steerable importance function

g (u) = L(u) max(n.u, 0)

Represent using SH bases
8 coefficients — good approximation
[Ramamoorthi & Hanrahan]

<a(n), Y(u)>

Rotated coefficients Spherical Harmonic bases



Steerable importance function

g (u) = L(u) max(n.u, 0)

rewrite <a(n), Y(u)>

g (u) = <a(n), L(u) Y(u)>



Steerable importance function

g (u) = L(u) max(n.u, 0)

<a(n), Y(u)>

g (u) = <a(n), L(u) Y(u)>

Precomputed



Steerable importance function

A

<a(n), L(uw) Y(u)>

i\




Steerable importance function

\:‘f\?"'v:?& DX
IR
R 4

Y

%

Precompute and store
(per vertex)

Function of normal

<a(n), L(uw) Y(u)>

i\




Drawing samples

Triangle selection

Stratified sampling of selected triangle



Drawing samples

Triangle selection

proportional to function integral within triangle

O(log N) cost (N triangles)

Stratified sampling of selected triangle

according to linear function
O(1) cost



Environment map

Results

Clamped cosine

/

Product

'\
':\ﬁ '

Samples (green)

Output




Results: Reduced variance

3l Sampling(16 Samples)
51 Sampling (64 Samples)
steerable 51 Sampling (16 Samples)
Steerable 51 Sampling (64 Samples)

2
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Differant Mormal Directions




Results: Images generated

5*'-}556 samples

4./
b

T

7

?

f

: |
1+ 72 samples

[T A,

A5
£

L = |
s 36 samples

od (90, 180 and

360 samples)




Questions ?

[Ramamoorthi & Hanrahan]

An efficient representation for irradiance environment maps.
SIGGRAPH 2001.

[Teo]
Theory and applications of steerable functions.
PhD thesis, 1998.

|[W. Freeman|

Steerable filters and the local analysis of image structure.
PhD thesis, 1992.



Assessing Monte Carlo Estimators:
Applications in Image Synthesis

Kartic Subr James Arvo



Review: Estimator

Simple example — Estimating the Mean




Review: Estimator

Simple example — MC Estimator for the Mean

Sample domain randomly (unif.)

Average function-values at sample
locations




Review: Estimator

Simple example — MC Estimator for the Mean

Sample domain non-uniformly

Average weighted function-
values at sample locations

'‘Compensate' for sampling



Review: Estimator

Repeat process
Obtain several estimates

Histogram of Estimates

I\



Assessing Estimators

‘ Trusted Estimator ‘

°Analytica1 Solution

Reference



Assessing Estimators

Typically compare 1° and/or 2" order statistics

i.e. Mean and Variance

‘Trusted Estimator Mean( ‘) > Mean( .)

°Analytical Solution Var( ‘) > Var( .)

Reference



Assessing Estimators- Image Synthesis

Cost

time

number of samples
Mean

difference images

inspecting convergence plots
Variance

inspecting image noise



Assessing Estimators- Image Synthesis

Drawbacks (current techniques)

subjective
weakly quantitative
comparing variance plots- large number of estimates

difficult, often impossible, to automate



Typical Classes of MC Estimators
in Image Synthesis

a2 gg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytical Solution

Reference 2 % A " l

Reduced Variance,
Biased Estimators



Verifying Absence of Bias

1. Estimator vs Analytical Solution

2 » gg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytica1 Solution '

Reference 2 % % 2 l

Reduced Variance,
Biased Estimators



Verifying Absence of Bias

2. Estimator vs Trusted Estimator

2 » gg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytica1 Solution

Reference 2 % % 2 l

Reduced Variance,
Biased Estimators




Verify Variance Acceptability

3. Verify variance acceptibility- Estimator vs Constant

2 > gg....l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytica1 Solution

Reference » ”n ...

Reduced Variance,
Biased Estimators



Verify Variance Reduction

or Compare Variances
4. Estimator vs Estimator

2 » gg...l

Reduced Variance,

' Trusted Estimator . )
Unbiased Estimators

°Analytical Solution

Reference 2 % % 2 l

Reduced Variance,
Biased Estimators



Sample: Collection of observations

Sample \

Observation

Estimate i.e. a Random Variable



Review: Hypothesis Testing

Formulate Collect Sampl
Null and Alternative QNEEE 2elnmie
Hypothesis y
Determine Maximum
Test Statistic I - Probability
F(s) of False Rejection
Evaluate

Test Statistic F(y)
using Sample y

\

Accept or Reject
Null Hypothesis
based on F(y)



Review: One-Sample vs Two-Sample Tests

One-Sample Test
BEE8 8

F(y)
Two-Sample Test

...g-- J ...ya-- .)

F(yl,y2)



Review: Rejecting the Null-Hypothesis

Find boundaries of rejection region
Compute F(y) using the sample 'y'

Reject if F(y) falls inside rejection region

One-Tail Test Two-Tail Test

Ca Ca/2 C1-a/2

Cq = G'(a) where G(s) is the CDF of F(s)



Tests Performed and their Test Statistics

One-Sample Testsw Two-Sample Tests

Compare Means of
Two Estimators

Test for Bias against
Constant

Test for Mean

Student's
t-distribution

Student's
t-distribution

Test that Variance is
Bounded

Compare Variances of
Two Estimators

Test for Variance
Chi-Square

. F-Distribution
distribution




Setting up Hypothesis Tests

Careful

Sensitive to distribution

most tests for normally distributed data

Testing Estimators in Image Synthesis

Compare secondary instead of primary estimators



fa)
Sampling
the hemisphere

)]
Sampling
the projected
hemisphere.

fel
Sampling the
planar areq.

(e
Sampling the
solid angle.

FPrimary estimator
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Results: Comparing Means and Variances

Unifor mnl
Hemisphere 1 M 1 ot mp it

Unifor
Proj-Hemisph. |Gt Pa—— P

Unifor IH“
Area on Light St 1l in .

solid angle LI

Mean - red riance -blue bars




Results: Comparing Means and Variances

Hemisphere L

= = - - = o - .

|
if
Pro[jj—llille(r)lllﬂlilslph. m “

= = = =
= = = = = o = = . - = -
= = = =

if
Area on Light 1

= = - - = o - .

solid Angle 11

> = = > = = > = >

Mean - red bars Variance -blue ba

a = 0.01




BRDF Sampling

Using Usin
BRDEF-sampling Re 'ect;gon
Algorithm )

Ashikmin-Shirley




Results — BRDF Sampling

2-Sample Goodness-of-fit (Kolmogorov-Smirnov)

Using Usin
BRDEF-sampling Re 'ect(igon
Algorithm )

Ward's Obviously Different

Not so Obvious
But Our Test Failed

Ashikmin-Shirle |




Irradiance due to a Triangular Luminaire

Light Source
Shading Normal « v Normal

Irradiance “ Light Source =~ Radiance >»Z=X-Y



Irradiance due to a Triangular Luminaire

/ L(X?Z‘HA .3Z dy
Area(D) 2] ||Z||

Create Erroneous Estimators

Omitting the cosine term for shading



Irradiance due to a Triangular Luminaire

Create Erroneous Estimators

Omitting the cosine term for shading

Non-uniform sampling of illuminaire



Irradiance due to a Triangular Luminaire

Create Erroneous Estimators

Omitting the cosine term for shading
Non-uniform sampling of illuminaire

Omitting change of variables



Results — Error Detection

Reference Without Cosine

- Non-uniform

Incorrect |
Sampling of Change of
~ Light Source Variables




Results — Error Detection

Incorrect
Change of
Variables

Non-uniform
Sampling of
Light Source



Questions ?

[Fisher 59]

Statistical Methods and Scientific Inference

[Neyman & Pearson 28]

On the Use and Interpretation of Certain Test Criteria for
Purposes of Statistical Inference

[Freund & Walpole 87]

Mathematical Statistics



Contributions — 1

Bandwidth prediction for efficient depth of field

-~

Speedup = 17.3

I
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Contributions — 2

Steerable importance sampling

fp;fv;}_ESfi samples

\4~ 72 samples
7/A



Contributions — 3

Framework to assess Monte Carlo estimators




Questions ?

Acknowledgements
Kitchen scene images — Cyril Soler

INRIA, Grenoble

James Arvo, Fredo Durand, Nicolas Holzschuch,
Francois Sillion



Incident Illumination at P

/ L(w) dw

H

=ib=

/ Radiance L(w) W
m rad

! |




Monte Carlo integration

/L(w) dw ~ %ZL(%)

1=1

W; are distributed uniformly in ‘H



Monte Carlo integration

N

/L(w) dw ~ %ZL(Q}@)

1=1
H
W; are distributed uniformly in ‘H

A

Sample distribution
determines efficiency

—— o0 0 00 0 0 0 0 >



Preprocess

Partition sphere of directions into a set of spherical
triangles

Compute and store vector w at each vertex
Compute and store vector W for each triangle

Construct hierarchy of weights(no higher order terms)

Wl




Sample Generation

Tree traversal to select a triangle given a normal n

. / Input

', Oriented clamped-cosing
*.._ lobe coefficients

Right Branch
Probability %

s Segmentitriangle) selected with probability

[ N Segments (triangles in 3D) '—"'




Frequency Transport

— Sensor Light Source

-

Initialize (A,S)
Shear(d)

Lens

Multiglz(L) lane in Focus

Convolve(O)

Shear(d3

Shear(dZ) Occluder

2ar(c) + Multiply(B)



