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Figure 1: Our multiscale decomposition of image (a) allows detail éoelatracted based on spatial scale rather than contrast aagdgoves
edges. (b) Boosting fine scale features increases the ctrdfahe pattern on the vase. (c) Boosting coarse scale asnénd suppressing
fine features reduces the contrast of the pattern, whilee@mging the contrast of the vase with its background. (d) Beamplots (rows

indicated using arrows in (a), (b) and (c)), illustratingetteffect of the
examples of edges that have been preserved.

Abstract

We propose a new model for detail that inherently captosesl-
lations a key property that distinguishes textures from individua
edges. Inspired by techniques in empirical data analysisnaor-
phological image analysis, we use the local extrema of tpatin
image to extract information about oscillations: We defiatad as
oscillations between local minima and maxima. Buildingloakey
observation that the spatial scale of oscillations areattiarized by
the density of local extrema, we develop an algorithm forodec
posing images into multiple scales of superposed osaitiati

Current edge-preserving image decompositions assumeeineg
tail to be low contrast variation. Consequently they appherfs

that extract features with increasing contrast as sucae$syers
of detail. As a result, they are unable to distinguish betwiagh-

contrast, fine-scale features and edges of similar corttrasére to
be preserved.We compare our results with existing edgeepriag

image decomposition algorithms and demonstrate excippgaa-

tions that are made possible by our new notion of detail.

Keywords: image decomposition, computational photography

1 Introduction

A variety of applications in computational photography uieg a
decomposition of an image into different scales. Tradélosp-
proaches that use linear bases have evolved to accommaddate t
need for respecting strong edges. Recent definitions oéseak
usually based on spatial scale definitions combined withtenmo
on the range to differentiate strong edges [Tomasi and Maridu
1998; Durand and Dorsey 2002; Farbman et al. 2008; Lischinsk
et al. 2006; Choudhury and Tumblin 2005]. Current approsiche
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two equalizations (b) and (c). The dashed liméhe plots show two

share a common notion of an edge— large gradients, or latge va
differences, where the definition of large might depend enap-
plication. However, this notion of an edge makes it challegdo
capture fine details or textures that have fine spatial sedlaigh
contrast. For example, in Figure 1(d), some edges to bepebse
are lower contrast than oscillations to be smoothed. Ettgthe
white dots on the vase as detail requires aggressive smgotii
gradients, which would also blur single edges that are torbe p
served (see Fig. 2). This distinction between edges antlaigms
raises challenges in defining fully multiscale decomposgi be-
cause the interplay between spatial and edge considetatida to
unexpected results, as shown by Farbman et al. [2008]

We propose a novel non-linear image decomposition thateffe
tively extracts fine-scale features, regardless of themtrest, as
detail and yet preserves softer salient edges in the base lay
contrast to previous approaches that rely on magnitudesxef p
differences at their heart, our approach captures locayénuscil-
lations by considering local image extrema. A fine-scaleutex
is characterized by rapid oscillations (see Fig. 1) betwaarnma
and maxima. Furthermore, the oscillation between extrenmége
critical information that permit the distinction of inddial edges
from oscillations. We obtain a multiscale decompositiornrdgur-
sively smoothing the image while also progressively ca@rggthe
scale at which extrema are detected.

1.1 Related work

Several image decomposition techniques have been praposed

Strategies that use linear filters [Burt and Adelson 1983)nran
and Woodell 1997; Pattanaik et al. 1998] produce halo attfat
edges and have been succeeded by non-linear filters tharypees
strong edges— a popular choice being the bilateral filtemidsi
and Manduchi 1998; Durand and Dorsey 2002; Choudhury and
Tumblin 2005]. Bae et al. [2006] used the bilateral filter &ps
arate images into low- and high-contrast features and mbatgal
the layers independently to enhance photographic looktalFeit
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al. [2007] presented a technique to enhance shape andesadac
tails of objects using bilaterally filtered representasiarf a set of
differently litimages. Our goal is to extract from a singhedge, at
each scale, the finest spatial oscillations as detail witassuming
them to be low-contrast oscillations.

Two approaches have been proposed for multiscale decotiopssi
using the bilateral filter. One strategy is to progressivetrease
the width of the range and spatial Gaussian through the eoars
ing process. Chen et al. [2007] used this technique to aactsar
bilateral pyramidfor progressive video abstraction. Another strat-
egy [Fattal et al. 2007] recursively applies the bilaterkéffito
the smoothed versions of the input image. This strategyedsess
the width of the range-Gaussian during successive iterago that
edges from preceding smoothing operations are not bluuddgl
the coarsening.

In recent work, Farbman et al. [2008] pointed out that, wiiile
bilateral filter is effective at smoothing out low amplitudeise at a
fine scale, multiscale decompositions using the bilatdtal Buffer
from a variety of problems. Progressive widening of the eaagd
spatial Gaussians through the coarsening process was sbpnot
duce halo artifacts at strong edges. To overcome some pnelné
using the bilateral filter in a multiscale decompositionrtfaan et
al. [2008] proposed a filter that smoothes an input imAgg com-
puting an image that is as closelt@as possible while being smooth
everywhere except at regions where the gradietitiefarge. They
used a weighted least squares filter, originally used torabrihg-
ing during deblurring of noisy images [Lagendijk et al. 1P8Bhe
nature of this optimization makes it impossible to presesaiéent
edges with lower contrast than the texture that is to be snealot

In summary, smoothing filters currently used in image deammp
sition algorithms assume detail is low-contrast. As a tesotal
variation at different contrast levels are extracted asesgive lay-
ers of detail. Such layers of detail do not necessarily ssefine-
scale spatial variation.

A notable exception, foiD data, is empirical mode decomposi-
tion [Huang 1998]— a powerful data analysis tool originghhp-
posed to decompose nonlinear, nonstationary signalstiefo in-
trinsic modes of oscillations. The decomposition is achieby
iterative removal of the finest intrinsic oscillations aditated by
local extrema. This technique is popularly used on 1D datadh
not contain sharp discontinuities. A few attempts at extanthe
technique to image decomposition [Nunes et al. 2003; LiuRaty
2005; Damerval et al. 2005] have uncovered a number of dificu
ties. One formidable challenge that has not been addresgbé i
need to respect sharp edges. Another drawback of empiriodé m
decomposition is its poor handling of signals where ostilies at
different scales occur as bursts, in parts of the domainptblelem
of intermittency [Li et al. 2005]).

1.2 Contributions

We introduce novel definitions, based on local extrema, floes
and detail that permit the distinction between highly casted
texture and single edges. Using these definitions we dewatop
edge-preserving smoothing algorithm that allows fine scide
tail to be extracted regardless of contrast. We perform ae-ed
preserving multiscale decomposition by recursively aimgjythe
smoothing algorithm on the base layer. The decompositioreco
sponds to features at different spatial scales with saéidges be-
ing preserved. We compare our approach with existing deosimp
tions and demonstrate its effectiveness using applicatibigure 4
places our novel algorithm in the context of existing apphess.

(b) Our smoothing

(c) WLS Filter
A=13,a=02)

(d) WLS Filter
A=13,a=1.2)

Figure 3: The ubiquitous notion of edges as pixels with large gradi-
ents does not allow disambiguation between fine-scalerf=satuind
edges that are to be preserved, as shown by this exar(g@l&he
contrast of the pattern on the flower vase is greater than sgro
the edges of the soft shadows and petal boundari@s. Using
our smoothing algorithm, the pattern is extracted as detatause

of its fine scale, while coarser soft shadow- and petal-bated
are preserved(c) The weighted least square (WLS) filter does not
smooth the pattern if fidelity to strong gradients is retaing@l) On

the other hand, the WLS filter necessarily blurs softer edyes
though they are coarse-scale features while smoothing dfttenn

on the vase.

2 Extrema-based multiscale decomposition

We present a novel smoothing algorithm which effectively
smoothes highly contrasted oscillations while presengatient
edges. By applying this algorithm recursively on the smedtim-
age, we compute iaultiscale decompositioof an input image into
layers at different scales of coarseness. In comparisdnexisting
edge-preserving multiscale decompositions, our algorisignifi-
cantly increases the ability to distinguish high-conttasture from

a dense field of edges.

Our notion of detail inherently captures repetitive vadawof inten-

sity, which we ternoscillations Locally, the amplitudes of oscil-
lations represent contrast while their spatial-frequescepresents
fineness in scale. Our goal is to smooth fine-scale oscitigtior
detail, regardless of their amplitudes (see Fig 6). We extract the
locally finest-scale oscillations as detail using a singf®athing
operation, and obtain a multiscale decomposition by pszive
smoothing. During successive smoothing operations onetbiel+
ual, we coarsen the scale at which extrema are detected.

Inspired by empirical mode decomposition and morpholdgdioa
age filters, we examine thHecal extremaof the input image to de-
tect oscillations. Empirical decomposition does not presedges
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Figure 2: Intensity plots along a scanline of an input image are shovth three filtered versions: (b) Bilateral filtering with a aservative
(blue) and aggressive (black) range parameter values ; fed@&nt-based edge preserving smoothing technique (WkeS8rfd [2008]) with

larger (blue) and smaller (black) gradient preserving parater values; (d) Our smoothing filter. While existing téghas (b) and (c) are
effective in smoothing variation with small amplitude @luthey necessarily blur edges (black) that have smallegnitades of gradients
than the oscillations to be smoothed. Our smoothing algarismoothes large oscillations and strictly preserves gdgeen), without the

need for careful selection of parameter values.

Definition of Definition

Detail of Edge Assumption
. Low Large .
“Hier | contast tensiy OCER
variation difference
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Algorithm oscﬁlations of neighboring between
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Figure 4: Comparison of our approach with three existing tech-
niques for image decomposition: Bilateral filtering [Fatet al.
2007] , weighted least squares (WLS) filtering [Farbman et al
2008] and bidimensional empirical mode decomposition (EEM
[Huang 1998] .

while morphological operations do not preserve shape §Sand
Vincent 1992]. We exploit information provided by local extna
about the oscillations in the image and preserve both— ealges
shape. Our algorithm is based on two key observations: (13iDe
(even if high-contrast) is characterized by a large derditpcal
extrema; (2) salient edges (even if low-contrast) are ctaraed
by a large variation in their neighboring extremal values.

Using local extrema, rather than contrast, to characteletail pro-
vides two important benefits. First, we make a@riori assump-
tions on the dynamic range of the input image or on the angaitu
of the oscillations. Second, we obtain the local scale ofllasc
tions independent of contrast. Progressive coarseningeo$tale
at which extrema are detected results in layers with osicifia at
different scales. Also, by recursively removing detaig ttegrees
of coarseness in the multiscale decomposition are likebatmure
the inherent superimposed scales of oscillation in thetimpage.

For simplicity, we describe our algorithm for an input gregie
image!. Similar to existing decomposition techniques, we perform
the decomposition on the luminance channel for color imagés
denote image-space coordinatesy) with boldface letters. Thus
I(p) is the intensity of the given grayscale imabat pixelp.

2.1 Smoothing

We definedetail asoscillations between local minima and maxima
(see Fig 5). We extract detail by subtracting a smoothed énag
that we call themean from the input. The smoothing algorithm
uses the local extrema to detect oscillations at their fiseate,
locally. By interpolating the minima and maxima indeperttign
we construct twaextremal envelopeghat sandwich the data, and
propagate information about local oscillations to all jxa the
image. The average of the two interpolants, evaluated at@ael,
provides an estimate of the local mean about which the asicitis
occur. To ensure that the mean respects edges in the inpgéjma
the interpolants need to be edge preserving in the traditense
that they retain fidelity to the input at strong gradients.

Our smoothing algorithm consists of three steps: (1) Idieation

of local minima and local maxima df, (2) Interpolation of the lo-
cal minima and maxima to compute minimal and maximal exttema
envelopes respectively; (3) computation of the smootheanmé

as the average of the extremal envelopes. Figure 5 illestrie
three steps of our smoothing algorithm by plotting 1D slicEthe
Barbara input image (red), its extrema, extremal envelgpkse
and magenta) and smoothed mean (black). The detail layéris o
tainedasD = I — M.

Extrema location: We use a simple test for locating image max-
ima. Pixelp is reported as a maxima (resp. minimajtf most

k — 1 elements in in thé x k neighborhood aroung are greater
(resp. smaller) than the value at pixel Oscillations whose max-
ima are detected by usingia k kernel have wavelengths of at least
k/2 pixels. Intuitively, using a large kernel overlooks theedgion

of fine oscillations. We start witk = 3 and increase the kernel
size for multiscale smoothing, after extracting fine oatitins (see
Sec. 2.2).

Extremal envelope construction Given an imagd and a set of
pixels S (image local extrema), we compute an extremal envelope
E using an interpolation technique that was proposed by Letin
al. [2004] for image colorization. In our context, we seekiraer-
polantE such that neighboring pixel8(r) and E(s) have similar
values if I(r) and I(s) are similar. More formally, we minimize
the functional

2

SE@ = Y weE(s)

r seN(r)

@)
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Figure 6: Plots showing the input intensities (red) along a row andsiparation into detail (green) and mean (blue) by our altjor.
Despite the large amplitude of some oscillations they atmeted as detailD, while single edges of lower amplitude are preserved in the

smoothed mean/;.

Local |
Minima ™~ o R

Input Step 1: Locate extrema

Smoothed
Mean

Maximal
Envelope

Minimal
Envelope

Step 2: Compute envelopes Step 3: Average envelopes
Figure 5: The three steps of our smoothing algorithm illustrated
with plots of intensity along the row shown in Figure 6tep 1:
We locate the local minima and maxima of the input (red). Note
The plot is along a row in the 2D input and extrema correspond-

and maximal envelopes respectively. The smoothed meareiisag
computed as the average of these two envelopes (see Fig 5).

2.2 Multiscale decomposition

A single smoothing operation df yields a detail imageD,, that
contains the finest-scale local oscillations and a mé&éan that rep-
resents a coarser trend. We obtain a multiscale decomposifi
the input image by recursively extracting a number of désgiérs
from the mean. Aften recursive smoothing operations, we obtain
detail imaged1, Do, ..., D,, atincreasing scales of coarseness and
a residual mean image:

I(p) =Y _ Di(p) + Mu(p). 3)

Choosingk = 3 as the size of the extrema-location kernel (see
Sec. 2.1) for the first smoothing steplofesults in a detaiD; that
captures oscillations of frequency up3@2 pixel ™. By increas-
ing k, we effectively capture coarser oscillations while retualy
smoothingM;. Progressively increasingthrough each recursive
smoothing causes the different detail layers to contaireesingly
coarse oscillations. In our experiments we found that theri&hm

ing to some peaks seem to be missing since they lie on adjacentvas not sensitive to the factor by whi¢ghwas increased. For all

scanlines Step 2:We compute the minimal (magenta) and maximal
(blue) envelopes as edge-preserving interpolants thrabghmin-
ima and maxima respectiveltep 3:The smoothed mean (black)
is computed as the average of the two envelopes.

subject to the constraint
vVpeS E(p)=I(p).

N (r) denotes the neighbors of and weights

(I(r) - I(S))Q)

207

e o oD ( @

are computed using the local variangg aroundr. We adopt the
approach of Levin et al. [2004] and minimize the quadratiocfu
tional using their weighted least squares formulation, clvhie-
duces to solving a sparse linear system uiNtfr) defined as 8 x 3

local neighborhood.

Smoothed mean Performing the envelope construction indepen-
dently on the minima and maxima of the image yields the mihima

the results in the paper we increageby a constant value of eight,
between iterations. Figure 7(d) visualizes the extremi 8f; and
M. For compact visualization, the three sets of extrema aresh
in different vertical regions of the image.

2.3 Discussion

Effects of noise For noisy input images, our algorithm effectively
separates the noise if the scale of the noise does not matcicale

of features in the input image. We repeated an experiment per
formed by Farbman et al. [2008], on a greyscale image witbrsgv
step-edges of varying magnitude that was polluted withenaigwo
scales. Our decomposition algorithm effectively recotkesnoise

at different scales (see Fig. 8).

Edge preservation Current edge-preserving image decomposi-
tions use local contrast to define edges. On the other hand, we
define edges as regions where tragiation in the values of the
neighboring extremas large. Our smoothing filter preserves edges
because the extremal envelopes implicitly maintain figebt the

data at pixels where the variation in the range values of #aeby
extrema is large. Regions with large-amplitude, oscdladi are
smoothed effectively since the local extrema have siméduies.
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(a) Input image (b) Base/detall

(c) Base/detail

after one smoothing operation after two smoothing operations and two base layers (b) and (c)

Figure 7: Our multiscale decomposition extracts features based ein fpatial scale. An input image is shown along with its éalayer
decomposition. The local extrema of the input image, the teger in (b) and the base layer in (c) are shown as three aimyttertical

regions in (d).
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(a) Input imagel (b) Our decomposition of
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(c) I smoothed twice
using lterative WLS

(d) I smoothed twice
using our algorithm

(e) Mean (blue) using
Iterative WLS

(f) Mean (black) using
our method

Figure 8: Results of applying our algorithm on a noisy image
(courtesy of Farbman et al. [2008]). (a) The input imafes a
piecewise constant image containing several step-edgdgfef-
ent magnitudes, to which noise was added at different sc&les
smoothing algorithm produces a better estimate of the mdale w
effectively extracting detail at multiple scales. (b) Thesuit of our
decomposition on a single row. (¢) The result of smootHinging
iterative WLS [Farbman et al. 2008]. (d) The result of smaugh
I using our algorithm. (e) A plot of the smoothed result (blug)
ing WLS filtering, along with the input (red). (f) A plot of thar
smoothed result (black) with the input (red).

Robustness to image scalingPerforming the decomposition of a
scaled version of an image provides consistent resultsifatim-
dow used for extrema detection is scaled accordingly. Tre i
the kernel used in our extrema detection determines thedafge-
quency of oscillations that can be extracted as detail. Tintaia
consistency between decompositions of scaled versiomeafiput
image it suffices to simply scale the the kernels by the santerfa

Sparse extrema When the density of local extrema is very low, the

interpolation [Levin et al. 2004] can become unstable. He@rea
low extremal density indicates that the underlying funtti® very
smooth. Introducing artificial interpolation constrairfextrema)
in smooth regions makes the interpolation stable. In practive
insert artificial extrema in regions of the image that cantad ex-
trema and are larger than a given threshold sigex 50 pixels).

Smoothing by contrast reduction In traditional empirical mode
decomposition [Huang 1998] of smooth 1D data, smooth iterp
lation schemes are used to construct the extremal enveldfes
use an edge-preserving interpolation scheme so that thetketb
mean preserves isolated discontinuities. The tendendyeahter-
polant to preserve large gradients may result in incomgieteoth-
ing of oscillations in a single iteration. However, a condiion
of increasing the window size for extrema-location and qrenf
ing the decomposition in the log-domain make this effectaasin
imperceivable. Another solution is to repeat each smogtkiep
(keepingk fixed) until the detail is completely extracted.

Features at boundaries of textured regionslarge-amplitude os-
cillations that occur at the boundaries of textured regiaresin-
distinguishable from edges. Figure 9 illustrates an examlere,
despite the high contrast, the spotted pattern on the hatdsthed
effectively while subtler shading is preserved on the a@arczale.
However, the bright spots at the boundary with the ribbomaise
taken to be part of the ribbon. Handling such cases wouldirequ
semantic information such as from an explicit pattern matghl-
gorithm.

3 Results

We tested our smoothing and decomposition algorithms onietya
of images. On average, a four-layer decompositioh02f x 768
images took about0 seconds using a naive solver for computing
the extremal envelopes. Using a simple multigrid solveryweee
able to achieve a speedup of about. To locate extrema, we use a
3 x 3 kernel for the finest detail and progressively enlarge thedie
by a constant value (8) through the recursion for coarsertay

3.1 Comparison

We wish to stress the difference in philosophies betweerential-
gorithms and our approach. Our novel definition of detailegp®t-
itive oscillatory features between local extrema, produftenda-
mentally different decompositions from existing solugahat in-
terpret large gradients as edges to be preserved. Theetliffes
are primarily with coarse-scale features that have lowreshiand
fine-scale features that are highly contrasted.

Techniques, that extract low contrast features as deyagically
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Figure 10: The Barbara input image along with results of smoothing withWLS filter [Farbman et al. 2008] using various combinasio
of the input parameters. Zooming into insets with contréséxture and subtle shading, we see that gradient-baséuhiguees are unable to
preserve subtle, coarse features while smoothing fine;aoalirasted texture. Our method preserves subtle shadidgéectively smoothes

the texture.

F | \

(a) Input image

(b) Smoothed image

Figure 9: Failure case: Although the high-contrast, spotted pattern
on the hat is smoothed effectively while retaining subtheading
information, parts of this pattern on the boundary with tlitgbon
are indistinguishable from the ribbon. Although our defonit of
detail does not inherently disambiguate edges from paosailla-
tions of similar amplitude at boundaries, this is an extrezmam-
ple. Handling such cases would require semantic infornmasiach

as from an explicit pattern matching algorithm.

demonstrate their utility using images where the low cattdetail
also tends to be fine-scale. On such images, despite theediffe
in philosophies, our results are quite similar since findesdea-
tures extracted by our technique as detail also happen t6 lbevo

contrast. For example, using the flower example of Farbman et

al. [Farbman et al. 2008] we achieve similar results (Fig) sliice
the details on the flower petals are fine-scale and of lowetrasin
than at the boundaries. In this paper, we focus on casesrtithiqe
different decompositions from gradient-based approaches

Figure 15 compares the results of our technique with exjstie-
composition schemes. One key difference is that our decsitiqo
extracts, earlier, fine-scale features (such as the petuvlesds the
bottom of the image) as detail, while existing schemes ekiosv-

contrast features (such as the large clouds) earlier ai. deta

Figure 10 shows an example where the input contains textate t

pendent approach, smoothing the oscillation necessaribothes
low-contrast edges (see also Fig. 3). Also, current decsitipos
can involve non-intuitive manipulation of input paramstexcross
different images. In comparison, our technique is simpi®athes
texture, respects soft, single edges, preserves subtténghand
consistently smoothes a variety of images with widely défe
contrasts.

3.2 Applications

Multiscale decompositions of images, into layers of vagyaon-

trast, have been used in several applications includinglemtion

and image abstraction [Farbman et al. 2008; Lischinski.&tG06;

Fattal et al. 2007]. In addition to these, we present apjitina that
exploit a key property of our decomposition— the extractagt |
ers correspond to superposed oscillations of increasiagseaess.
We apply our decomposition to enhance detail (image ectéaiz)

and to remove detail ( estimating tone from cross-hatched)és,
separating texture from illumination, illumination trées.

Hatch to tone: Few techniques are able to recover tone from im-
ages with hatching or stippling, while preserving edgese dif-
ficulty lies in retaining edges depicted by these techniquiite
smoothing high-contrast variation. Smoothing filters like bilat-
eral filter or weighted least squares filter are not very usefthis
context. Figure 12 shows the residual from running threatiens

of our smoothing algorithm on a cross-hatched input image W
smooth fine-scale oscillations, ideally to their flat meageslier

in the process. However, in the case of non-homogeneous; hig
contrast oscillations, the edge preserving nature of threlinear
extremal interpolants causes the contrast of the osaiflatio be
reduced considerably but not completely. Consequentlyctime-
puted mean tends to contain residual oscillations thatranesgale.
The amplitude of these residual oscillations depends oaritg-

nal wavelength; fine oscillations leave weaker residuals toarse
ones. Over multiple iterations of such smoothing appliecbibn
nary (or highly contrasted) hatched images, the completpray
between homogeneity of oscillations in 2D and grayscalieluess
from previous iterations tends to result in a smoothed invelgere
the tone at each pixel is directly related to the frequencioocél
oscillations. While we smooth variation, the edges of \aie are
well preserved. We compare our solution with a median filiée
problem with the latter is that, using a small kernel sizagtts not
recovered at a coarse scale and Increasing the kernel gies wiit

is more contrasted than some edges. Using a purely gradient d thin features like outlines. Another drawback of the medilder is
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Figure 11: Fine-scale enhancement of the input image (left) using VWaghman et al. 2008] (middle) and our technique (right) po®s

similar results with subtle differences since the detaittmnpetals are of, both, low contrast and fine scale. The WltBadédails to enhance
fine-scale detail that are high-contrast such as the sesration the leaves in the background and specularities onrtfedl $eaves on the
right. In addition, coarser features such as the subtle alim@tion on the defocused top-left portion of the imageeambanced as detail by

the WLS method simply because they are low contrast.

that the filter only selects pixel levels that are presenhaihput
image.

&
I N

(c) Our method

Ae

(aj Input

(b) Median filtering

Figure 12: (b) Applying a median filter has two disadvantages:
Choosing a large kernel size washes out thin edges whilesshoo
ing a small kernel size does not smooth the hatched pattdso; a
the median filter simply selects one of the existing greyldeved
cannot produce intermediate shades of grey. (c) The rekafua
ter three iterations of smoothing using our algorithm yghllgood
estimate of the tone while preserving the edges of hatcligang

Separating fine texture and coarse shadingWe are able to sepa-
rate fine texture from shading, provided the oscillationtheftex-
ture and shading are of different scales. Although we make th
same assumption as Oh et al. [2001] that illumination infdiom
is “lower frequency” than texture, we do not make any assionpt
on the contrast of the texture. Since Oh et al. use the ballfiér
ter, they are prone to the additional assumption that th&astnof
the texture and shading are vastly different. We demorstra
effectiveness of our algorithm by retexturing an image awrihg
high-contrast texture, while retaining shading on the yevelinted
texture (see Fig. 13). We achieve this by transferring ttegsaned
luminance of the input image onto its edited version.

Image equalization The layers from our decomposition can be
seen as an adaptive basis that sum to the input. By congiderin
different linear combination of these layers, we show ttedaidl at
different scales can be exaggerated. In practice, since angpon-
late the log-luminance channel, we perform the linear cowtinns

in log space. Current equalization techniques define dasalibw
contrast. Instead, we are able to control relative corgrastea-

7
(a) Input image (b) llumination transfer
onto painted texture

Figure 13: Our edge preserving decomposition separates an input
image into layers containing detail at different scales). The tiled
texture on the floor is finer than illumination effects suclgkxssy
reflections and shadows. (b) The coarse illumination infaion is
extracted from (a) and combined with the fine texture infdioma
extracted from (b) to preserve shadows and subtle effects asi
glossy reflections of pillars on the newly painted textunsét).

tures based on their scales (see Fig.1). More examples @eima
equalization are presented in the video.

High dynamic range (HDR) images Although filters that extract
detail based on contrast (WLS and bilateral filters) are rapmro-
priate tools for tone-mapping, in practice, we find that ayuadiza-
tions produce reasonable results (see Fig. 14). An adveuatagur
method is intuitive and consistent parameter values acliffesent
images. However, since we filter based on scale and not ebntra
specialized techniques may be preferable for input wheréibR
content is spread across significantly different spatialesc

4 Conclusion

We have presented a novel definition for image detail aslatoihs
between local minima and maxima. While existing decompmsit
algorithms extract detail based on a notion of contrast,deini-
tion of detail captures the scale of spatial oscillatioosally.

Building on our definition of detail, we proposed a simpleaalg
rithm to smooth an input image. By recursively performing th
smoothing with extrema detection at multiple scales, wéopered
a decomposition of the input image into multiple-scale tayef
detail and a coarse residual. Our algorithm smoothes highrast
texture while preserving salient edges. Finally, we expbbithis
ability by applying our decomposition in a variety of appliions.
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(b) Tone-mapp=dgthe WL filter
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(a) Tone-mapped using the bilateral filter (c) Our equalized result

Figure 14: Comparison of our equalization against tone-mapping ofmegaon an example high dynamic range (HDR) input image. (&)
and (b) have been directly taken from [Durand and Dorsey 2@0@ [Farbman et al. 2008] respectively. (c) is obtainedngsbur 2-layer
equalization where the base layer is scaled to half and réxioed with the detail. Although our notion of detail is basgdspatial scale and

not contrast, our equalization can be used to achieve basie-mapping by scaling down the layer(s) with HDR content.

Acknowledgements

We thank Adrien Bousseau and Alexandrina Orzan for thep trel
creating the video. We also thank the MIT, ARTIS and SIGGRAPH
reviewers for their insightful suggestions. This work waported

by funding from ANR ‘HFIBMR’ (ANR-07-BLAN-0331), INRIA
Equipe Associée with MIT Flexible Rendering and the INRI#sp
doctoral program.

References

BAE, S., RRIS, S.,AND DURAND, F. 2006. Two-scale tone man-
agement for photographic l100RACM Transactions on Graphics
25, 3, 637-645.

BURT, P. J. AND ADELSON, E. H. 1983. The laplacian pyramid as
a compact image cod¢éEEE Trans. on Communications COM-
31,4 532-540.

CHEN, J., RRIS, S.,AND DURAND, F. 2007. Real-time edge-
aware image processing with the bilateral griiCM Transac-
tions on Graphics103.

CHOUDHURY, P., AND TUMBLIN, J. 2005. The trilateral filter
for high contrast images and meshes SIGGRAPH '05: ACM
SIGGRAPH 2005 Course8CM, New York, NY, USA, 5.

DAMERVAL, C., MEIGNEN, S.,AND PERRIER, V. 2005. A fast al-
gorithm for bidimensional emdignal Processing Letters, IEEE
12, 10 (Oct.), 701-704.

DURAND, F.,AND DORSEY, J. 2002. Fast bilateral filtering for the
display of high-dynamic-range images.A€M Transactions on
Graphics: SIGGRAPH '02ACM Press, New York, NY, USA,
257-266.

FARBMAN, Z., FATTAL, R., LISCHINSKI, D., AND SZELISKI, R.
2008. Edge-preserving decompositions for multi-scale tmd
detail manipulationACM Transactions on Graphic§7.

FATTAL, R., AGRAWALA, M., AND RUSINKIEWICZ, S. 2007.
Multiscale shape and detail enhancement from multi-ligigge
collections.ACM Transactions on Graphic§1.

HUANG. 1998. The empirical mode decomposition and the hilbert
spectrum for nonlinear and non-stationary time seriesyaisl
Proceedings of the Royal Society A: Mathematical, Physinell
Engineering Sciences 454971 (March), 903-995.

LAGENDIJK, R. L., BIEMOND, J., AND BOEKEE, D. E. 1988.
Regularized iterative image restoration with ringing retthn.
IEEE Trans. on Signal Processing (Acoustics, Speech, apd Si
nal Processing) 3612, 1874-1888.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Transactions on Graphics 2889—
694,

Li, H., YANG, L., AND HUANG, D. 2005. The study of the
intermittency test filtering character of hilbert-huangnsform.
Mathematics and Computers in Simulation I022—-32.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND
SzELISKI, R. 2006. Interactive local adjustment of tonal val-
ues.ACM Transactions on Graphics 28, 646—653.

Liu, Z., AND PENG, S. 2005. Boundary processing of bidimen-
sional emd using texture synthesiSignal Processing Letters,
IEEE 12 1 (Jan.), 33-36.

NUNES, J., NANG, O., BOUAOUNE, Y., DELECHELLE, E.,AND
BUNEL, P. 2003. Texture analysis based on the bidimensional
empirical mode decomposition with gray-level co-occuceen
models.Signal Processing and Its Applications, 2003. Proceed-
ings. 2(July), 633-635 vol.2.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001.
Image-based modeling and photo editingPnceedings of SIG-
GRAPH 2001ACM, NY, USA, 433-442.

PATTANAIK, S. N., FAIRCHILD, M., FERWERDA, J., AND
GREENBERG D. P., 1998. Multiscale model of adaptation, spa-
tial vision and color appearance.

RAHMAN, Z. U., AND WOODELL, G. A. 1997. A multi-scale
retinex for bridging the gap between color images and thegmum
observation of scenes. IEEE Trans. on Image Processing:
Special Issue on Color Processing 6965-976.

SERRA, J.,AND VINCENT, L. 1992. An overview of morphologi-
cal filtering. InCircuits, Systems and Signal Processihg—108.

ToMAsI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. i Proc. of the Sixth International
Conference on Computer Vision, Bombay, India, January 1998

TUMBLIN, J.,AND TURK, G. 1999. Lcis: a boundary hierarchy
for detail-preserving contrast reduction. Pmoceedings of SIG-
GRAPH '99 ACM Press/Addison-Wesley Publishing Co., NY,
USA, 83-90.



To appear in the ACM SIGGRAPH conference proceedings

Fine (Residual/Detail) Medium (Residual/Detail) CoarRegidual/Detail)

Bilateral
Filter

Iterative
WLS

method

Figure 15: Comparison of our results with existing approaches: Bilaltéltering [Chen et al. 2007], MSBLT [Fattal et al. 2007] @IS [Tum-
blin and Turk 1999], WLS, iterative WLS [Farbman et al. 2008Lr smoothing extracts features based on spatial scaleewltier methods
smooth low-contrast features first. Using our decompasititbe pebbles and stones towards the bottom of the imagexase®d as fine-
and medium-scale detail respectively, even though thewaliecontrasted. On the other hand, despite their low castirene clouds are not
extracted as detail due to their coarse scale. The compaiiis@ges have been directly taken from [Farbman et al. 2008].
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