
Order Independent, Attenuation-Leakage Free Splatting using FreeVoxels

Kartic Subr Pablo Diaz-Gutierrez Renato Pajarola M. Gopi
Computer Graphics Lab, University of California Irvine

Visualization and MultiMedia Lab, Unviersity of Z̈urich

{kartic, pablo, gopi}@ics.uci.edu, pajarola@acm.org

Technical Report ifi-2007.01, Department of Informatics, Unviersity of Zürich

Abstract

In splatting-based volume rendering, there is a well-known
problem of attenuation leakage, that occurs due to blend-
ing operations on adjacent voxels. Hardware accelerated
volume splatting exploits the graphics hardware’s alpha-
blending capability to achieve attenuation from layers of
voxels. However, this alpha-blending functionality results
in accumulated errors(attenuation leakage), if performed
on multiple overlapping alpha-values. In this paper, we in-
troduce the concept of FreeVoxels which are self-sufficient
structures in which the data required for operations on
voxels are pre-computed and stored. These data are used
to render each voxel independently in any order and also
to eliminate the attenuation leakage. The drawback of the
FreeVoxel data structure, that this paper does not address,
is that it requires a significant amount of extra storage. De-
spite that, the advantages of a FreeVoxel data structure war-
rant extensive investigations in this direction. Specifically,
FreeVoxel can be used, other than in solving the attenu-
ation leakage problem, to achieve order-independent ren-
dering; in parallel volume rendering, use of FreeVoxels al-
lows arbitrary static data distribution with no data migra-
tion; it also enables synchronization-free rendering with-
out compromising load-balancing. A similar data structure
with comparable memory requirements has also been used
for opacity based occlusion culling in volume rendering by
[10]. In this paper, we also describe a hierarchical exten-
sion of FreeVoxels that lends itself to multi-resolution ren-
dering.

1. Introduction and Motivation

Research in volume visualization, particularly volume ren-
dering [3], has focused on important aspects in the field such
as handling large data [5, 2, 13, 13, 33], improving quality

of rendering [9, 8, 20, 21, 32, 7, 14] and improving render-
ing efficiency [26, 30, 17, 35, 12].

Parallel volume rendering has enjoyed much attention
[16, 22, 11, 29], motivated by applications ([27, 25]) deal-
ing with large amounts of data. In [34], it is reported that
only few cluster-parallel algorithms have been developed,
for ray casting and Fourier domain volume rendering. How-
ever, splatting on clusters has been left out so far.

Even non-parallel hardware supported implementation
of traditional splatting-based volume rendering suffers from
the attenuation leakage problem due to incorrect blending
operations. Specifically, when discretized voxels are ren-
dered, adjacent voxel contributions are aggregated in their
overlap region. This aggregating function is not correctly
normalized resulting in the incorrect attenuation in the over-
lap region – the problem referred to as attenuation leakage.

Traditionally, volume rendering is done by sweeping the
data either front-to-back or back-to-front. In parallel render-
ing, such order-dependency leads to serious disadvantages,
like lower potential speed-up, data distribution issues and
serious synchronization problems. These issues have moti-
vated research in segmentation and data distribution [16, 5],
and synchronization. The limited speedup is a consequence
of the degree of parallelism being affected by imposed or-
der. Thus data need to be distributed carefully amongst the
different rendering nodes to minimize communication over-
head while rendering overlapping segments; another restric-
tion on the data segmentation is that the segments should be
necessarily convex and preferably compact. Despite strate-
gic distribution of data, there is an implicit need for syn-
chronization between the different nodes involved in ren-
dering a frame.

In this paper, we introduce the concept of FreeVoxels
that, in general, enables operations on individual voxels in-
dependent of other voxels at the cost of constant amount
of extra storage per voxel. Specifically, if this extra infor-
mation that is stored is the accumulated attenuation then
this FreeVoxel Attenuation solves the problem of attenua-



tion leakage in splatting based volume rendering. Interest-
ingly, it also enables order-independent rendering solving
many problems in parallel implementation of these algo-
rithms. In this context, we show that by using FreeVoxel At-
tenuation, the constraints on data distribution are eased and
there is no need for synchronization within a frame. Fur-
ther, restrictions on data segmentation are eliminated. Thus
FreeVoxel attenuation goes beyond the obvious trade-off
between memory and speed, and brings in incredible flexi-
bility in data management and elegantly solves other prob-
lems as mentioned above.

In Section 4.3, we extend this concept of FreeVoxels
to accommodate a single pass lighting and rendering algo-
rithm. In order to seamlessly integrate FreeVoxel attenua-
tion in multi-resolution volume hierarchies, that are com-
mon in handling large data sets, we also introduce a novel
attenuation filter to compute the FreeVoxel attenuations for
interior nodes in the hierarchy from those of their children.

The drawback of the FreeVoxel data structure, that this
paper does not address, is that it requires significant more
storage than conventional techniques. A similar data struc-
ture with comparable memory requirements has also been
used for opacity based occlusion culling in volume render-
ing by [10]. Gao et al. [10] describe a method of improving
speedup by using a data structure constructed as a prepro-
cess to decide whether a voxel contributes its color to the
image or not when seen from a specific direction; however,
front-to-back order is imposed on rendering. They have also
reported tremendous speed-up in parallel implementation
of occlusion culling. Our work presented in this paper uses
similar amount of memory to solve various other problems
like attenuation leakage and single-pass lighting. In fact, the
plenoptic opacity function can also be well integrated into
the FreeVoxel data structure.
Main contributions: The following are the main contribu-
tions of this paper.

• FreeVoxel data structure:We introduce a generic
structure that expends memory to store additional
pre-computed information to be used not just for the
sake of improving efficiency but also the correct-
ness of the result.

• Avoiding attenuation leakage:We show how the
FreeVoxel attenuation can be used to solve the leak-
age problem in some splatting techniques.

• Order-independent rendering:We use FreeVoxel at-
tenuation to achieve order-independent rendering and
hence achieve highest potential speedup.

• Filtering scheme:We adapt the scheme proposed to
cope with multi-resolution volume rendering by defin-
ing a filter on the FreeVoxel attenuation that enables
the building of a hierarchy.

The main concepts involved are presented in Section 2,
explanations of algorithms in Section 3, applications of the
data structure in Section 4, and implementation in Section 5.

2. FreeVoxels

FreeVoxels encapsulate all data required by each voxel, to
be operated on independently of each other. This section in-
troduces the concept of FreeVoxel attenuation and the ex-
tension that allows its hierarchical representation.

2.1. FreeVoxel Attenuation

A five-dimensional Plenoptic function [1, 10]A(x,y,z,θ ,φ)
denotes the attenuation of a ray of light along the direction
(θ ,φ) from a 3D point(x,y,z) to infinity. Thus

A(x,y,z,θ ,φ) : Ψ×Θ×Φ → α (1)

whereΨ denotes the range of values for the coordinates of
a 3D point in space,θ ∈ [−π/2,π/2] andφ ∈ [0,2π] denote
the direction of light in spherical coordinates andα = [0,1].
A zero value forA indicates maximum attenuation; it im-
plies that the point(x,y,z) is totally occluded along the di-
rection(θ ,φ).

The FreeVoxel attenuationis a Plenoptic function de-
fined for a restricted 3D space (Figure 1). For any point
P(x,y,z) in the restricted 3D space, FreeVoxel attenuation
in the direction (θ ,φ ), is a 2-dimensional function

AP(θ ,φ) = A(x,y,z,θ ,φ). (2)

 

Volume Volume 

P(x,y,z) P(x,y,z) 

R R 

Figure 1. Figure shows a ray R and the interval
(thickened) along R where R is attenuated be-
fore reaching P

The volume rendering problem involves a trans-
port equation that regulates the interaction of light and
matter in a particle model. Traditionally, volume render-
ing algorithms have approximated this transport equa-
tion, along the rayR(θ ,φ) between ray parameterst1 and



t2, with an integral equation

IR =
∫ t2

t1
I(t)e−

∫ t
t1

α(s)dsdt (3)

whereIR is the intensity along rayR, I(t) is a volume inten-
sity function (that includes emitted, scattered and reflected
light) andα(t) is the opacity function. Lett1 andt2 describe
the entry and exit points of the ray on the boundary of the re-
stricted space. The exponential term is the attenuation of a
ray until it reaches the point (with parameter t) on the ray.
By definition, the FreeVoxel attenuation is given by

AP(θ ,φ) = e−
∫ t
t1

α(s)ds
. (4)

The attenuation along a ray between any two pointsL
and M in the restricted space with parameterstL and tM
(t1 < tL < tM < t2) can be computed asAM/AL.

Employing a zero-order quadrature of the integral along
with a first order approximation of the exponential in Equa-
tion 4, we get

AP(θ ,φ) =
k−1

∏
i=1

(1−αi) (5)

whereαi are the opacity values for a discrete set of(k−1)
points beforeP, along the ray.

For a hierarchically organized volume, the FreeVoxel at-
tenuationAh

P for a blockP in the hierarchy levelh is

Ah
P(h,θ ,φ) : H×Θ×Φ → α (6)

whereH is a set of integers in the range[0,dlognNe]. This
value for every block is calculated using an appropriate fil-
ter function on the FreeVoxel attenuation values of its chil-
dren’s sub-blocks.

3. Algorithms

In this section, we describe the algorithm to construct
the FreeVoxel attenuation, the filtering technique to com-
pute the FreeVoxel attenuation for a hierarchy of vox-
els, and finally the volume rendering algorithm that uses
the FreeVoxel attenuation data structure.

3.1. FreeVoxel Attenuation Construction

FreeVoxel attenuation for a voxel is the accumulation of
opacity values from the viewpoint until that voxel in the
viewing direction. We compute this value for a given voxel
and viewing direction using ray-casting. In our implementa-
tion we choose 26 ray directions such that they pass through
the voxel centers and one of voxel corners, voxel edge mid-
points, and face midpoints. These are the only rays that
pass through the centers of all the voxels along their path.

The choice of these rays simplifies the precomputation of
FreeVoxel attenuation and brings down the complexity of
the number of unique rays traced in the ray casting to O(N2),
whereN is the size of the data along one dimension. Since
for each ray, up toN voxels will be updated, the complexity
of computing the FreeVoxel attenuation for the entire vol-
ume is O(N3). Along each ray, an incrementally accumu-
lated product

Avk =
k−1

∏
i=1

(1−αvi )

is updated and stored at each voxelvk, where 1≤ i ≤ k−1
denotes the sequence of voxels along the ray direction from
outside the volume until the voxelvk.

We illustrate the computed values ofAvk in Figure 2.
This figure shows images of a uniformly gray translucent
cube whose voxels all have the same transparency. For il-
lustration, the images show a view different from the view-
ing directions (shown with red arrows) indicate viewing di-
rection. The accumulated attenuationAvk can be seen to in-
crease through the volume along the viewing direction. Re-
gions of the volume that are totally occluded are shown with
dotted boundaries.

In our implementation, during the construction of the
FreeVoxel attenuation, a floating point intermediate result
is maintained to prevent accrual of errors. However, at the
end of the preprocess, the attenuations are stored along each
direction in one byte and so the resolution of the represen-
tation is 1.0/256. Thus error is maintained low except when
the viewpoint is inside the volume. In this case, a division is
required (see Section 2.1) and thus there is a slight amplifi-
cation of error.

3.2. Hierarchy and Attenuation Function Filtering

Given a fine resolution of FreeVoxels, computing a hierar-
chy of FreeVoxels involves, first constructing a hierarchy
of blocks of voxels and then the FreeVoxel attenuation for
each block in the hierarchy. We use an octree hierarchy for
the former. The attenuation of each block is obtained by fil-
tering the FreeVoxel attenuations of its eight children in the
octree (refer to Figure 3). Recall that the attenuation rep-
resents the exponential term in Equation 3. We approxi-
mate the integral in the exponent for a block to be the arith-
metic mean of the integrals in the exponents of its children.
Thus, the FreeVoxel attenuation of a blockM with children
Bi (1≤ i ≤ 8) is given by

AM = e−
∫ t
t1

αM(s)ds = e
∑8

i=1−
∫ t
t1

αBi
(s)ds

8 = 8

√
8

∏
i=1

ABi (7)

Thus, we obtain the FreeVoxel attenuation of a block by
computing the geometric mean of the attenuations of its
children. More generally, this corresponds to computing the



 

Figure 2. FreeVoxel Attenuation of a uniformly gray and translucent cube along three different directions
(red arrows). The dotted boundaries show areas where maximum attenuation occurs for each of the three
directions.

attenuation of a block using the mean optical depth of its
children. In contrast, the arithmetic mean of the attenuation
of its children computes the average of the energy reach-
ing them.

Level 0: 1 Block 

Filtering

Level 1: 8 Blocks 

Level d: 8d Blocks 

 

Figure 3. Blocks in the Octree hierarchy of At-
tenuation functions.

3.3. Rendering

The rendering phase is quite straightforward and needs the
viewpoint and the view frustum information as its only in-
put. Using this information, the voxels/blocks to be ren-
dered, their levels in the hierarchy and their directions to-
wards the viewpoint are determined. The level in the hierar-
chy is decided for each block depending on parameters like
screen projection area. For every blockB rendered, a look-
up is performed on the pre-computed FreeVoxel data struc-
ture to obtain the accumulated opacity value isAh

B in the
given direction (Equation 6). Further, the colorCB and the
filtered opacity valueαB of the blockB are also retrieved.
The final contribution ofB to the image isCαBAh

P, which is
computed independent of any other block. Thus, voxels are

rendered independent of each other and the final image is
just an accumulation of individual voxel renderings.

It is important to note that the viewpoint can also be
placed within the volume, say in voxelV. In this case, the
accumulated opacity value of any other voxel/blockB is
computed asAh

B/AV along the direction fromV to B.
Parallel rendering: For cluster-parallel rendering, the

blocks in each level of the hierarchy are uniformly and stat-
ically distributed amongst the render nodesRn. Since blocks
are rendered independent of each other, there is no depen-
dency between rendering nodes, and hence the potential
speedup isn.

3.4. Storage requirements

The total amount of storageSrequired in our implemen-
tation is given byS= NB SB whereNB is the number of
blocks andSB is the storage required per block.NB is O(N3)
since it is simply the number of nodes in the octree (Fig-
ure 3). The space required per voxel is proportional to the
number of rays casted. Despite its high space requirements,
the advantages of the FreeVoxels data structure we show in
the next section lead us to think it deserves a deeper study.

4. Applications of FreeVoxels

4.1. Attenuation Leakage-free Splatting

Splatting techniques such as [31, 18, 6, 24, 35] use overlap-
ping blending kernels for a weighted interpolation of opac-
ity values for computing properly attenuated color contribu-
tions of voxels to the direct volume rendering (DVR) inte-
gral. With hardware supportedα-blending such splatting is
faced with an undesirableattenuation leakageproblem.

Consider two voxelsp and q (Figure 4) with trans-
parency valuesαp andαq, intensityIp andIq and blending
kernelsωp andωq (with ωp+ωq = 1 for any point R in their
intersection). The contribution of voxelsp andq to a point
Ron screen is thus given byIpq = ωp αp Ip+ωq αq Iq. More



importantly, the attenuation effect ofp andq on voxelssand
t farther away fromR is determined byαpq = ωp αp+ωq αq

and the composition of the two layers of voxels is computed
as

IR = Ipq+(1−αpq) · Ist. (8)

However, back-to-frontα-blended splatting will yield
the following composition (i.e. if the splatting order after
Ist is first p and thenq)

I∗R = ωqαq Iq +(1−ωqαq) (ωpαp Ip +(1−ωpαp) Ist) (9)

with the total attenuation ofIst being(1−ωqαq)(1−ωpαp)
rather than 1−ωp αp −ωq αq as in Equation 8. Due to
this incorrect attenuation we refer to the effective difference
IR− I∗R asattenuation leakage. If many layers of voxels are
splatted by back-to-frontα-blending (Figure 4 top) the ef-
fective attenuation leakage due to Equation 9 is greatly am-
plified.

With the FreeVoxel attenuation introduced in Section 2
we can correctly compute the contribution of individual
splatted voxels avoiding the attenuation leakage problem
outlined above. Given the attenuationAp of a voxelp along
a direction(θ ,φ) through the volume to a pointRon screen,
we can directly compute the final contribution of layered
voxelsp, q ands, t to pointRas

IR = ApωpαpIp +AqωqαqIq +AsωsαsIs+Atωtαt It . (10)

Therefore, we can avoid the excessive multiplication of
(1−ωα) terms, as required in back-to-frontα-blending,
which causes the attenuation leakage effect.

R

qp

ts

pω qω

Π/2−Π/2

Π/2−Π/2

b
le

n
d

in
g

 w
ei

g
h

t

Figure 4. Top: Accumulation of splats along the
viewing direction. Bottom: Blending weights for
two adjacent splats.

4.2. Order Independence

In the case of discrete volume data, sampled along a struc-
tured grid, the coordinates of a pointx,y and z take inte-
gral values andv represents a voxel in the volume. A nu-
meric solution to the integral equation above (Equation 3)
is commonly obtained by employing a zero-order quadra-
ture of the inner integral along with a first order approxima-
tion of the exponential, while the outer integral is approxi-
mated with a finite sum of uniform samples.

IR =
M

∑
k=1

[Ikωkαk

k−1

∏
i=1

(1−ωiαi)] (11)

Ik is the color intensity derived from the illumination
model,αk the transparency of samples along the ray andωk

are the blending weights. Since the product term∏k−1
i=1 (1−

ωiαi) is stored as the FreeVoxel attenuationAv(θ ,φ) for
each voxel on the ray directionR(θ ,φ), the contribution
of any one voxelv to the image can be computed as
IvωvαvAv(θ ,φ). Thus the value inside the outer summation
in Equation 11 can be computed just by using the informa-
tion stored in every FreeVoxel. Since rendering involves a
simple addition (outer summation) of contributions by each
voxel along its viewing direction, it is independent of the or-
der in which voxels’ contributions are accumulated.

4.3. Single-pass Lighting and Rendering

The FreeVoxel attenuation of each voxel represents the
amount of light reaching it along different directions. When
the volume is illuminated, the attenuation of a voxelv along
the direction from the light source,L1, is used to scale the
amount of light reachingv from L1. As a result of the pre-
computed attenuation, shadows are visible on voxels with
opaque, gray occluders between them and the light source.
Illumination by multiple light sources can also be achieved,
by simply aggregating the effects of individual sources; this
computation still requires only one pass through the vol-
ume. When each voxel is being rendered, the FreeVoxel
data structure needs to be queried for FreeVoxel attenuation
once along each direction of illumination and once along
the viewing direction. Figure 7 shows an illuminated vol-
ume.

4.4. Data distribution and Synchronization

The FreeVoxel data structure contains all the required in-
formation to compute the final color contribution of a voxel
to the image. Hence, in cluster-parallel volume rendering,
no exchange of information is required between rendering
nodes. Since the frame rendered by each render node can
be composited in any order, no synchronization is required
within a frame.



processor 1

processor 2

processor 3

processor 4

view frustum view frustum view frustum

hierarchy level l hierarchy level l-1 hierarchy level l-2

front

a) b)

Figure 5. Static, uniform data distribution a) Distribution of blocks among multiple rendering nodes. b)
Blocks being rendered by different rendering nodes are shown in the hierarchy. Note the round robin distri-
bution of blocks in each level of the hierarchy among the different rendering nodes.

The FreeVoxels (attenuation functions and the filtered
color hierarchy) constructed during preprocessing can be
distributed statically and uniformly across each level in the
hierarchy, amongst the rendering nodes as shown in Fig-
ure 5. Static distribution implies that a particular block B is
always rendered by the same rendering node and there is no
data migration between nodes. Uniform distribution implies
that statistically, for a random sequence of view-points, the
expected number of blocks rendered by each render node
will be the same, leading to fair load balancing. The com-
bined advantages of no data migration, hardly any synchro-
nization constraints and fair load balancing, as a result of
using FreeVoxels, allow for potentially ideal speedup.

5. Implementation

To perform initial tests we implemented the FreeVoxel data
structure and a basic hardware accelerated splatting tech-
nique. As mentioned in Section 3, the FreeVoxel data struc-
ture has a size of 27 bytes per block. Twenty-six of these
are used to store the FreeVoxel attenuation values and one
byte to store the scalar, from which the color and per voxel
α values are determined based on the transfer function. A
memory mapped array employing a 3D Hilbert space fill-
ing curve for linearization [15, 19] is used to store attenua-
tion data.

Our splatting system incorporates pre-integrated foot-
prints of blending kernelsωv that are applied to a voxelv
asα-textured splats. Hence the pre-integrated kernel mod-
ulates the voxel’s basic intensity contributionαv Iv. Each
voxel is rendered as a splat with the footprint kernel tex-
ture and facing the viewer.

Figure 6 illustrates the effect of the FreeVoxel approach
on the attenuation leakage problem outlined in Section 4.1
on a uniformly transparent cube. On the left side, a standard
back-to-front orderedα-blended splatting is shown which
exhibits significant attenuation leakage. The image on the

right side demonstrates the improved attenuation properties
using FreeVoxels.

Figure6. Left: Standardback-to-frontα-blended
splatting with noticeable attenuation leak-
age. Right: Order-independent accumulation-
splatting using the FreeVoxel attenuation.

Figure 7 demonstrates the effect of single-pass lighting
and rendering outlined ind Section 4.3 on a volume data
set illuminated with red light. The image clearly shows the
shadowing and color bleeding effects that can easily be
achieved with the FreeVoxel attenuation.

We performed a simple simulation of multiple rendering
nodes by distributing data statically and uniformly amongst
multiple virtual render nodes. The simulation is a good in-
dicator of an actual speedup because speedup is a ratio and
also because no communication is required between ren-
der nodes until image composition for each frame rendered.
A graph (Figure 8) was plotted of the speedup against the
number of nodes simulated. The graph supports our theory
and shows that the speedup is indeed close to the number of
render nodes.



Figure 7. Human head dataset illuminated with
red light.

Figure 8. Graph shows that speed-up is almost
equal to the number of rendering nodes. Speed-
up was calculated with 8, 16, 32, 64, 96 and 128
render nodes.

6. Conclusion and Future Work

This paper describes a concept that introduces an abstrac-
tion for each voxel that allows it to be rendered independent
of other voxels. Using this concept, we have also shown
how the attenuation leakage problem can be eliminated us-
ing this concept (Section 4.1). Further, constraints on any
particular order during rendering are eliminated. This al-
lows a maximum potential speedup without constraints on
the data distribution requirements or synchronization be-
tween render nodes in a distributed volume rendering setup.
Using a cluster for rendering and adopting the splatting
technique, each rendering node independently renders a
frame with data from a static distribution. Thus communi-
cation is required only to accumulate the image for each
frame.

This paper also demonstrates a scheme that allows the
representation of the Freevoxel attenuation to be stored hi-
erarchically, which lends itself to multi-resolution render-
ing.

Although there is indeed a high memory penalty in this
particular implementation, methods such as that proposed
by [10] can be used for more compact representations of
the FreeVoxel attenuation. Some other improvements that
we are working on are high quality ray casting as prepro-
cess, cluster implementations of preprocess and rendering
dealing with larger datasets and interesting filtering opera-
tions for multi-resolution rendering.

References

[1] E. H. Adelson and J. R. Bergen.Computational Models of
Visual Processing. Cambridge, MA: MIT Press, 1991.

[2] P. Bhaniramka and Y. Demange. Opengl volumizer: a toolkit
for high quality volume rendering of large data sets. InPro-
ceedings of the 2002 IEEE symposium on Volume visualiza-
tion and graphics, pages 45–54. IEEE Press, 2002.

[3] K. Brodlie and J. Wood.Recent Advances in Volume Visual-
ization. Computer Graphics Forum, 2001.

[4] B. Cabral, N. Max, and R. Springmeyer.Bidirectional reflec-
tion functions from surface bump maps. ACM SIGGRAPH,
1987.

[5] E. Camahort and I. Chakravarty. Integrating volume data
analysis and rendering on distributed memory architectures.
In Proceedings of the 1993 symposium on Parallel render-
ing, pages 89–96. ACM Press, 1993.

[6] R. Crawfis and N. Max. Texture splats for 3D scalar and vec-
tor field visualization. InProceedings IEEE Visualization 93,
pages 261–266. Computer Society Press, 1993.

[7] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufmany.
High-Quality Volume Rendering Using Texture Mapping
Hardware. Eurographics/Siggraph Workshop on Graphics
Hardware, 1998.

[8] R. A. Drebin, L. Carpenter, and P. Hanrahan.Volume render-
ing, 1988.

[9] G. Frieder, D. Gordon, and R. Reynolds.Back to Front Dis-
play of Voxel-Based Objects. Computer Graphics and Appli-
cations, January 1985.

[10] J. Gao, J. Huang, H.-W. Shen, and J. A. Kohl.Visibility
Culling Using Plenoptic Opacity Functions for Large Vol-
ume Visualization. IEEE Visualization, 2003.

[11] A. Garcia and H.-W. Shen.An interleaved parallel volume
renderer with PC-clusters, 2002.

[12] A. Garcia and H.-W. Shen.An Interleaved Parallel Volume
RendererWith PC-clusters. Fourth Eurographics Workshop
on Parallel Graphics and Visualization, 2002.

[13] S. Guthe, M. Wand, J. Gonser, and W. Straber. Interactive
rendering of large volume data sets. InProceedings of the
conference on Visualization ’02, pages 53–60. IEEE Com-
puter Society, 2002.



[14] M. Hadwiger, C. Berger, and H. Hauser.High-Quality Two-
Level Volume Rendering of Segmented Data Sets on Con-
sumer Graphics Hardware. IEEE Visualization, 2003.

[15] D. Hilbert. Ueber stetige Abbildung einer Linie auf ein
Flachenstuck. Mathematische Annalen, 1891.

[16] W. M. Hsu. Segmented ray casting for data parallel volume
rendering. InProceedings of the 1993 symposium on Paral-
lel rendering, pages 7–14. ACM Press, 1993.

[17] P. Lacroute and M. Levoy.Fast Volume Rendering Using
a Shear-Warp Factorization of the Viewing Transformation.
ACM SIGGRAPH Proceedings, 1994.

[18] D. Laur and P. Hanrahan. Hierarchical splatting: A pro-
gressive refinement algorithm for volume rendering. InPro-
ceedings ACM SIGGRAPH 91, pages 285–288. ACM Press,
1991.

[19] J. K. Lawder and P. J. H. King. Querying multi-dimensional
data indexed using the hilbert space-filling curve.SIGMOD
Rec., 30(1):19–24, 2001.

[20] M. Levoy. Efficient Ray Tracing of Volume Data. ACM
Transactions on Graphics, 1990.

[21] M. Levoy. Volume Rendering using the Fourier Projection-
Slice Theorem. Proceedings Graphics Interface, 1992.

[22] P. P. Li, S. Whitman, R. Mendoza, and J. Tsaio. Parvox: a
parallel splatting volume rendering system for distributed vi-
sualization. InProceedings of the IEEE symposium on Par-
allel rendering. ACM Press, 1997.

[23] T. MacRobert.Spherical harmonics; an elementary treatise
on harmonic functions, with applications. Dover Publica-
tions, 1948.

[24] K. Mueller and R. Crawfis. Eliminating popping artifacts in
sheet buffer-based splatting. InProceedings IEEE Visualiza-
tion 98, pages 239–245. Computer Society Press, 1998.

[25] D. R. Nadeau, G. Kremenek, C. Emmart, and R. Wyatt.A
Case Study in Large Data Volume Visualization of an Evolv-
ing Emission Nebula. Supercomputing, 2002.

[26] J. Nieh and M. Levoy. Volume Rendering on Scalable
Shared-Memory MIMD Architectures. Proceedings Work-
shop on Volume Visualization, 1992.

[27] S. Park, C. Bajaj, , and I. Ihm.Effective Visualization of
Very Large Oceanography Time-varying Volume Dataset. CS
& TICAM Technical Report, University of Texas at Austin,
2001.

[28] F. X. Sillion, J. Arvo, S. H. Westin, and D. Greenberg.A
global illumination solution for general reflectance distribu-
tions. ACM SIGGRAPH, 1991.

[29] A. Takeuchi, F. Ino, and K. Hagihara. An improvement on
binary-swap compositing for sort-last parallel rendering. In
Proceedings of the 2003 ACM symposium on Applied com-
puting, pages 996–1002. ACM Press, 2003.

[30] T. Totsuka and M. Levoy.Frequency Domain Volume Ren-
dering. ACM SIGGRAPH Proceedings, 1993.

[31] L. Westover. Footprint evaluation for volume rendering.
In Proceedings SIGGRAPH 90, pages 367–376. ACM SIG-
GRAPH, 1990.

[32] P. L. Williams and S. P. Uselton.Foundations for Measuring
Volume Rendering Quality. Technical Report, NASA Ames
Research Center, 1996.

[33] B. Wilson, K.-L. Ma, and P. S. McCormick. A hardware-
assisted hybrid rendering technique for interactive volume
visualization. InProceedings of the 2002 IEEE symposium
on Volume visualization and graphics, pages 123–130. IEEE
Press, 2002.

[34] C. M. Wittenbrink. Survey of parallel volume rendering al-
gorithms. In Proceedings Parallel and Distributed Process-
ing Techniques and Applications, 1998.

[35] M. Zwicker, H. Pfister, J. van Baar, and M. Gross.EWA Vol-
ume Splatting. Eurographics, 2001.


