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Abstract

Each pixel in a photorealistic, computer generated picture is calcu-
lated by approximately integrating all the light arriving at the pixel,
from the virtual scene. A common strategy to calculate these high-
dimensional integrals is to average the estimates at stochastically
sampled locations. The strategy with which the sampled locations
are chosen is of utmost importance in deciding the quality of the
approximation, and hence rendered image.

We derive connections between the spectral properties of stochastic
sampling patterns and the first and second order statistics of esti-
mates of integration using the samples. Our equations provide in-
sight into the assessment of stochastic sampling strategies for inte-
gration. We show that the amplitude of the expected Fourier spec-
trum of sampling patterns is a useful indicator of the bias when
used in numerical integration. We deduce that estimator variance
is directly dependent on the variance of the sampling spectrum
over multiple realizations of the sampling pattern. We then anal-
yse Gaussian jittered sampling, a simple variant of jittered sam-
pling, that allows a smooth trade-off of bias for variance in uniform
(regular grid) sampling. We verify our predictions using spectral
measurement, quantitative integration experiments and qualitative
comparisons of rendered images.

Keywords: stochastic sampling, Fourier analysis, Monte Carlo
sampling

1 Introduction

Image synthesis requires the integration of multi-dimensional sig-
nals. This is commonly achieved by averaging the values of the sig-
nal, stochastically sampled at a number of discrete locations. The
quality of the final output critically depends on the location and
weights of these samples. The sampling strategy affects the accu-
racy and precision of the estimates for the integral

Designing effective sampling strategies for integration is crucial for
efficient image synthesis. It is desirable to analyze stochastic sam-
pling patterns directly, in order to judge their suitability for numer-
ical integration; i.e., a sampling pattern should lead to accurate,
low-variance estimates with as few samples as possible. Unfortu-
nately their analysis is challenging, since the efficacy of a sampling
pattern depends on an intricate combination of three factors: the
distribution of the sample locations; the weighting used to accumu-
late sampled contributions; and the arrangement and structure of
samples.

For example, importance sampling approaches carefully tailor the
distribution and weights to reduce variance of the resulting esti-
mates. Stratified sampling [Neyman 1934; Keller 2002; Ostro-
moukhov 2007] and Poisson-disk sampling [Matérn 1960; Matérn
1986; Cook 1986; Lagae and Dutré 2008] are examples of ap-
proaches that reduce variance by enforcing structural constraints
(partitioning and minimum-radius resp.) on the sampling pattern.
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In this paper, we abstract away these choices and focus on the prop-
erties of the Fourier spectrum of the sampling function. We derive
expressions for the bias and variance of the integration scheme as
a function of the Fourier spectrum of the sampling pattern. We
demonstrate the utility of our theory by analyzing a minor modifi-
cation of the standard jittered-sampling algorithm.

Much work has been done on the spectral analysis of sampling pat-
terns for reducing the effects of aliasing in reconstruction [Dippe
and Wold 1985; Mitchell 1987; Mitchell and Netravali 1988]. Cook
argued that visual artifacts in image synthesis were not a result of
point sampling [1986], rather, that they were results of the sampling
being regular. Many approaches have been proposed [Hachisuka
et al. 2008; Egan et al. 2009; Soler et al. 2009; Lehtinen et al. 2012]
to adapt the sampling distributions and reconstruction filters to the
underlying continuous signal. Much of the work in image recon-
struction relies on each sample, of the continuous signal, containing
no error. However, each evaluation of the signal requires a multidi-
mensional integration (time, lens, reflectance, lighting, occlusion,
etc.) that is typically realized through stochastic sampling. Recent
work [Ramamoorthi et al. 2012] analyses errors in Monte Carlo
visibility sampling, in specific contexts, and provides insight using
a Fourier analysis of integration. In this paper we analyze the er-
ror of a general integrator using stochastic sampling, over multiple
realizations of sampling patterns drawn using the same strategy.

We distinguish between the manifestation of error in the form of
bias and variance, and express each in terms of the frequency spec-
tra of the sampling function and integrand. We express the bias of
the integration scheme in terms of the expected Fourier spectrum
of the sampling signal, over multiple realizations of the sampling
pattern, and the Fourier spectrum of the integrand. We derive that
the variance in the integration depends on the variance of the sam-
pling spectrum modulated by the power spectral density of the inte-
grand. Our equations reveal that the commonly used periodogram
is not ideally suited to analyze sampling patterns if the goal is to
assess the bias and variance when the samples are used in integra-
tion. Instead, we show that the amplitude of the expected sampling
spectrum provides direct insight into predicting bias.

We apply our theory to analyse a simple sampling strategy: Jitter-
ing each sample on a regular grid using a Normal distribution. As
our analysis shows, this simple variant of jittered sampling, which
easily generalizes to higher dimensions, is effective and can be used
to smoothly transition from a regular sampling pattern (yields a bi-
ased estimate with zero variance) to one that mitigates bias at the
cost of adding variance.

1.1 Related work

Assessing sampling patterns Many tools exist to evaluate the
samples themselves. For example, statistics such as Ripley’s K
and L statistics [Ripley 1977] are commonly used to model point
distributions, while tools such as the variogram and autocorre-
lation are used for assessing distributions. In computer graph-
ics, methods such as frequency domain analysis [Dippe and Wold
1985; Cook 1986; Mitchell 1991], a measure of spatial discrep-
ancy [Shirley 1991], statistical tests of hypothesis [Subr and Arvo
2007], and point correlation [Öztireli and Gross 2012] have been
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Figure 1: Illustration of errors in reconstruction and integration introduced by the sampling spectrum. Only the amplitude spectra are shown,
for illustration. The sampled function f

s

is the product of the bandlimited function f and the sampling pattern s. In the Fourier domain, the
spectrum of f

s

is obtained by convolving the spectra (blue and red) of f and s. If the sampling pattern has low enough frequencies so that
the aliased copies of ˆf (blurry magenta) pollute the DC ( ˆf

s

(0) in example 1), they introduce an error in the numerical integration [Durand
2011]. For reconstruction, the aliased copies need to pushed even more (factor of 2) to the higher frequencies, or they will intersect the
central replica of ˆf and produce an aliased reconstruction (example 2). In example 3, ŝ contains energy in frequencies greater than the
Nyquist rate. Phase plays an important role: that is, a shift in the sampling pattern (primal) may change the error dramatically.

proposed. Recently, Wei and Wang [2011] proposed a refor-
mulation of Fourier domain analysis for analyzing adaptive sam-
pling [Wei and Wang 2011]. Bowers et al [2010] proposed a novel
analysis of samples on surfaces, by projecting them onto the Eigen-
vectors of the mesh Laplacian. However, we conjecture that the
measure of quality of a sampling strategy is intertwined with its ap-
plication. For example, good quality might correspond to aesthetic
appeal for dithering and stippling, estimators with low variance and
bias for use in integration, various error metrics when used for sig-
nal reconstruction or robustness in physical simulations [Fienup
1997; Machiraju et al. 1995]. In contrast, we focus on assessing
the bias and variance of integrators using stochastic sampling.

Low discrepancy patterns Shirley [1991] introduced a mea-
sure of spatial discrepancy to assess the quality of a sample set.
Mitchell [1992] then proposed sampling strategies with the goal
of minimizing this measure idea by trading randomness for low-
discrepancy. Multidimensional integration using quasi-random pat-
terns converge more rapidly [Kollig and Keller 2002], trading bias
for variance. Much of the work in Quasi-Monte Carlo integration
in computer graphics can be seen as specific instances of classes
discussed in a seminal book by Niederreiter [Niederreiter 1992].
In a connection with Poisson-disk sampling, patterns that expose
a large minimum toroidal distance [Larcher and Pillichshammer
2001] are useful for quasi-random Monte Carlo integration in com-
puter graphics. Sampling using low-discrepancy sequences typ-
ically yield low-variance integration estimates. However, their
regularity causes reconstructions to be more susceptible to alias-
ing [Pharr and Humphreys 2010]. This is typically avoided by com-
bining regular and irregular sampling [Keller and Heidrich 2001;
Kollig and Keller 2002]. We study a variant of jittered sampling
which can be viewed as such a combination.

Spectral analysis in rendering Mitchell analysed the problem of
reconstructing images [Mitchell 1991] in the frequency domain. In
accordance with his thesis, that sampling patterns containing higher
frequencies tended to reduce perceptible artifacts, he proposed a
scanning sampling algorithm to optimally sample higher dimen-
sions for application in distributed ray tracing. Ramamoorthi and
Hanrahan [2004] studied reflection of light and expressed it as a
bandlimiting operation in the frequency domain. Durand et al [Du-
rand et al. 2005] derived transport operators in the Fourier domain
for emission, transmission, reflection and occlusion. Further work
led to efficient algorithms for sampling the lens aperture [Soler

et al. 2009] as well as time [Egan et al. 2009] domains. Belcour
et al [2012] present an algorithm to propagate approximate spectral
information of the 5D local light field. These approaches together
provide approximate information about the Fourier spectrum of the
integrand. In this paper, we study the impact of the spectra of the in-
tegrand as well as the sampling patterns on the quality of numerical
integration.

Spectral analysis of sampling patterns The distribution of energy
of a signal in the different frequencies has been shown to be an im-
portant consideration for designing sampling strategies for recon-
struction [Mitchell 1987; Mitchell and Netravali 1988; Dippe and
Wold 1985], digital half-toning and color separation [Amidror et al.
1994] as well as integration. The periodogram has become a stan-
dard tool, and is available in point sampling libraries [Schlömer and
Deussen 2011] for analyzing non-adaptive sampling patterns spec-
trally. Wei and Wang [2011] proposed a Fourier domain analysis
for analyzing adaptive sampling. The goal of their formulation is to
enable comparison of quality, of the arrangement of points, across
non-uniformly sampled sets. In contrast, our analysis predicts the
quality of numerical integration using the samples.

Spectral analysis of sampling for integration It is well known
that sampling below the Nyquist rate is prone to aliased signal re-
construction of bandlimited signals. For integration of bandlim-
ited signals, spectral aliases introduce error in the estimates when
the sampling is below half this rate [Křivánek and Colbert 2008;
Durand 2011; Belcour et al. 2012]. Figure 1 illustrates the differ-
ence between errors in reconstruction and integration. We study
this error introduced by the spectral aliases of the sampling pat-
tern. Our analysis is inspired by approaches that analyze formulae
used in numerical integration [Luchini 1994; Durand 2011] and re-
cent work by Ramamoorthi et al. [2012], which assesses errors due
to various sampling strategies for estimating visibility. However,
our approach differs from related work in three important ways: we
consider phase information, we assess secondary estimators and we
derive explicit equations for bias and variance in terms of the sam-
pling spectra.

Jittered sampling In standard jittered sampling, the center of each
cell of a regular grid is uniformly randomly perturbed, a.k.a. jit-
tered, within the cell. This produces a uniformly distributed set
of samples (stratified sampling with proportional allocation) whose
merits and demerits are well understood [Mitchell 1996; Arvo
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Figure 2: A comparison of three spectral properties of multiple sampling strategies. The periodogram is computed by averaging power
spectra of multiple realizations of the sampling pattern S(x). The amplitude of the expected spectrum, on the other hand, first averages
the realizations of the spectra (including phase) and then computes its amplitude. The variance of the sampling spectrum measures the
uncertainty in the spectrum, over the realizations, at each frequency. (b) is more informative than (a)

2001]. In Monte Carlo path tracing, stratified sampling provides
image antialiasing, at no extra cost, while radiance estimates are in-
tegrated in path space [Gallaher 1973; Cook 1986; Mitchell 1987].
Jittered sampling is simple, extends naturally to higher dimensions,
and is straightforward to parallelize. Standard jittered sampling
yields a radially anisotropic distribution of samples around centers
of the grid cells. We study a variant of jittered sampling in which
the jitter is radially symmetric. We derive equations for the bias and
variance of this sampling scheme.

Signal processing We are inspired by work in signal processing
that involve point processes [Bartlett 1964]. Spectral characteristics
of trains of randomly occurring delta functions with randomly vary-
ing intensities, or impulse processes [Leneman 1966], were used to
study communication systems with discrete pulse modulated con-
trols. We seek to study the spectral profile of sampling signals, as
Brémaud et al. [2003] did for common point processes and shot
noise. There is a key difference. Much of the digital signal pro-
cessing literature analyses a sampled signal, trying to recover the
underlying continuous signal. In this paper, our goal is to design
and assess a sampling signal for numerical integration of continu-
ous signals which can be sampled at will at chosen locations. This
can cause confusion in terminology. For example, Cook [1986]
misinterprets the notion of jitter in an older paper [Balakrishnan
1962]. Jitter in the latter referred to uncertainty in the periodicity of
the sampling function. That is, while dealing with real acquisition
systems, jitter is undesirable but unavoidable. In computer graph-
ics, jitter is typically used to describe an intentional perturbation of
the sampling function, for improved reconstruction or integration.

We focus on the analysis of error in numerical integration using
stochastic sampling, as a function of the underlying sampling func-
tion. We derive the bias and variance of such integrators (section 2)
in terms of the expected Fourier spectrum of the sampling function
and its variance respectively. We study the bias and variance of a
simple sampling algorithm (section 3).

2 Bias and variance of secondary estimators

Our goal is to analyze the of quality of numerical integration, within
the interval [0, T ], of a function f(x) : R 7! R+. For example, a
primary Monte Carlo estimator

I ⌘ 1

T

TZ

0

f(x) dx ⇡ f(X
i

)

is well known to be unbiased if the single sample X
i

2 [0, T ] is
drawn from a constant probability distribution function (pdf) within

the domain [0, T ]. However, this simple estimator is rarely used in
practice since it tends to have a high variance. A typically more
useful secondary estimator is obtained by averaging N primary es-
timates at different X

i

. This process scales the variance down by a
factor of N .

A general estimator for I is obtained by weighted averaging,

I ⇡ 1

N

NX

i=1

↵
i

f(X
i

),

where ↵
i

2 R+ are normalized weights. Substituting ↵
i

= 1/N
and using randomly distributed X

i

in [0, T ] yields the secondary
Monte Carlo estimator described above. While it is certainly pos-
sible to indiscriminately choose weights, ↵

i

, this is also counter-
productive since it potentially biases the estimator beyond use. The
weighted average can be written as an integral

1

N

NX

i=1

↵
i

f(X
i

) =

TZ

0

f(x) S(x) dx, (1)

where S(x) =

1
NT

P
↵
i

�(x � X
i

), i = 1..N is the general,
weighted sampling pattern. When the elements of the set {X

i

} are
obtained using some stochastic sampling strategy, S(x) is a random
variable1. Each such integral (rhs of eq. 1) is also a random variable
that provides a single estimate of I.

The quality of these estimates varies across sampling strategies.
Specifically, the quality depends on an intricate combination of
the distribution from which {X

i

} are drawn (eg. importance sam-
pling), the weights ↵

i

in the weighted average and a potentially
beneficial correlated arrangement of the samples (eg. Poisson disk
sampling). As an example of the effect of arrangement, consider
stratified sampling and random sampling. The two strategies pro-
duce estimators that converge differently although the distribution
and weighting of the samples is the same over the domain. How-
ever, the spectral characteristics of jittered sampling, as a result
of the partitioning constraint induced by stratification, are differ-
ent from those of random sampling. We express the bias and vari-
ance of stochastic integration schemes in terms of the spectral statis-
tics of the integrand and sampling function, thus accounting for the
combination of all three factors without explicitly studying each of
them.

Notation The overscript hat denotes Fourier transforms and ! is
the frequency variable. We denote random variables using capi-

1a function of random variables is a random variable.
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(a) Summary of notation (b) Graphical interpretation of |hˆS(!)i|

Figure 3: We study the statistics of the Fourier spectrum ˆS(!) over multiple realizations of the sampling function S(x). (a) illustrates
our notation. (b) Shows 4 realizations (numbered pink circles) of ˆS(!) in the complex plane, evaluated at a given frequency !0 . The red
circle is the mean of the 4 instances. The solid circle is the unit circle and the radius of the dotted circle is the amplitude of the mean value
of the realizations. V

⇣
ˆS(!)

⌘
describes the uncertainty in the location of the red dot. For this particular example, the periodogram is

h|ˆS(!0)|2i = 1 regardless of where, on the unit circle, the numbered pink circles are located.

talized bold letters. h.i denotes the expectation operator and V (.)
denotes the variance operator on random variables.

Realizations of the sampling function Each set of samples used to
obtain a secondary estimate, forms a single realization of the sam-
pling function S(x) that may be evaluated over the domain. For
example, consider an image rendered with N samples {X

i

}
i=1..N

per pixel. The incident radiance, through each pixel, is a secondary
estimate. Multiple realizations of the radiance estimate use differ-
ent sets {X

i

}, drawn using the same strategy. Assuming that neigh-
boring pixels have similar integrands and that they sample using the
same strategy, a high variance manifests as noise in the image. We
derive the influence of the statistics of ˆS(!), over multiple realiza-
tions of {X

i

}, on the bias and variance of the estimator.

2.1 Error in a single estimate

A single estimate F, obtained using a single realization of S(x), is

F =

TZ

0

f(x) S(x) dx =

ˆf⇧(!)⌦ ˆS(!)|
!=0 (2)

We use the shorthand f⇧(x) ⌘ f(x)⇧T

0 (x) and |
!=0 to denote the

DC term, which is the integral we seek. ⇧T

0 (x) denotes the boxcar
function which evaluates to unity when x 2 [0, T ] and zero other-
wise. ˆf⇧(!) and ˆS(!) denote the Fourier spectra of the integrand2

and sampling function respectively.

The error � ⌘ I � F, of a single estimate (primary or secondary)
can be written in terms of the Fourier spectra of the sampling func-
tion and integrand as

� =

ˆf⇧(0) �
Z

ˆS(!) ˆf⇧(�!) d! (3)

The error is a real value, despite S(x) and ˆf⇧(�!) being complex.
Since the integrand and sampling functions are real, the integral

2f̂⇧(!) is the convolution of f̂(!) with a sinc (Fourier transform of the
box function ).

over positive frequencies and negative frequencies have the same
amplitude but their phases differ in sign. Adding the two integrals
yields a real value. This error closely resembles (up to the handling
of the domain) the expression derived in [Ramamoorthi et al. 2012;
Durand 2011].

We study two properties of this error over different realizations of
S(x). First, its expected value h�i indicates whether the estimator
yields the correct result, on average — that the estimator is unbi-
ased. Second, its variance, V (�), provides information about the
coherence of the estimates.

2.2 Bias

The bias of an estimator is the expected error

h�i = ˆf⇧(0) �
Z

hˆS(!)i ˆf⇧(�!) d! , (4)

due to linearity of the expectation operator. hˆS(!)i is the expecta-
tion of the Fourier spectrum of the sampling function over multiple
realizations of the estimator. One way to obtain an unbiased esti-
mator is to ensure that hˆS(!)i = �(!) in eq. 4. That is, construct a
sampling strategy where the expected sampling spectrum only con-
tains a DC term.

Example 1: Uniform jitter is unbiased In uniform jitter [Ouel-
lette and Fiume 2001; Ramamoorthi et al. 2012] each secondary es-
timate uses a regular grid with a constant offset. This differs from
regular jittered sampling in that each realization of the sampling
pattern is still a regular grid, but across realizations, the entire grid
is jittered randomly. It can be shown that the expected spectrum of
a uniformly jittered regular grid contains only DC (see app. C), and
therefore yields unbiased estimates.

Example 2: Eliminating bias in non-uniform sampling Consider
a primary estimator using a weighted sampling function S(x) =

↵(X
i

) �(x �X
i

) with X
i

⇠ g(x), where g(x) : [0, T ] 7! R+ is
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the pdf from which X
i

are drawn. Its expected Fourier spectrum is

hˆS(!)i = h↵(X
i

) (cos(2⇡!X
i

) + ı sin(2⇡!X
i

))i

=

Z
↵(x) (cos(2⇡!x) + ı sin(2⇡!x)) g(x) dx

An obvious weighting scheme to obtain hˆS(!)i = �(!) is to set
↵(x) = 1/g(x). That is, importance sampling is unbiased when
the importance sample is positive everywhere (by the definition of
g(x)). Random sampling is a particular case where g(x) is a con-
stant. Primary and secondary Monte Carlo estimators, using ran-
dom sampling, are unbiased if the X

i

are drawn randomly from a
constant pdf. Other weighting schemes are possible. The weights
may be chosen to trade variance for bias.

2.3 Variance

The variance of the estimator is equal to the variance of the error
since the integrand is constant across realizations of the sampling
function. Furthermore, the realizations are mutually independent
and hence

V (�) =

Z
V

⇣
ˆS(!)

⌘
(

ˆf⇧(�!))2 d! . (5)

Equation 5 suggests that, for the resulting estimator to have a low
variance, the variance of the sampling spectrum (across multiple
realizations of {X

i

}) needs to be low where the integrand’s power
spectral density is large. Such a complementary spectral distribu-
tion of energy is even more important for variance, than for bias,
due to its modulation by the power (as opposed to amplitude) spec-
trum of the integrand.

By the definition of the variance of a complex value, the spectrum
of the sampling pattern is the sum of its real and imaginary parts:

V

⇣
ˆS(!)

⌘
= h (ˆS(!)� hˆS(!)i) (ˆS(!)� hˆS(!)i)⇤ i

= V

⇣
<(ˆS(!))

⌘
+V

⇣
=(ˆS(!))

⌘
(6)

z⇤ denotes the complex conjugate and <(z) and =(z) denote the
real and imaginary parts of z 2 C. Since the variance of the esti-
mator is the inner product of this spectral variance and the power
spectrum of the integrand, studying V

⇣
ˆS(!)

⌘
provides clues about

classes of integrands that may be estimated with low variance. Un-
like bias, the variance of the estimator does not depend on phase
information in the integrand’s Fourier spectrum.

2.4 Approximation: Amplitude of expected sampling

spectrum

Our expression for bias (eq. 4) relies on knowledge of phase infor-
mation of the integrand. It is impractical to expect knowledge of
phase information of the integrand (or else I would be known). We
now develop a conservative approximation for bias by ignoring the
phase information in the integrand’s spectrum.

The normalization of the sampling function results in the expected
sampling spectrum’s DC being unity. So the rhs of eq. 4 reduces to

Z
|hˆS(!)i| | ˆf⇧(�!)| e

�(hŜ(!)i)
e

�(f̂⇧(�!))
d!, (7)

(excluding at ! = 0) using the notation z = |z|e�(z) to express
each function in terms of its amplitude as well as phase. Ignor-
ing the phases e�(hŜ(!)i) and e

�(f̂⇧(�!)) amounts to assuming that

the bias is the sum of the products of the magnitudes of the sam-
pling and integrand spectra at all non-zero frequencies. This is
a reasonable assumption when the phase of the integrand is not
available, that leads to a worst case analysis of the bias. A large
value for |hˆS(!)i| at any frequency ! necessarily causes an in-
crease in the bias of the resulting estimator, unless the correspond-
ing | ˆf(!)| = 0. When nothing is known about the integrand, the
amplitude |hˆS(!)i| may therefore be used to predict the degree of
bias for certain spectral properties of the integrand.

Example Figure 2(b) plots the amplitude of the expected spectrum
for multiple sampling strategies. For example, we can predict that
Poisson disk sampling (cyan), if used in integration, will result in
the largest bias (on average). This is a conservative approxima-
tion, yet provides more information to assess potential bias than the
periodogram. In addition to the phase of the integrand, the peri-
odogram h|ˆS(!)|2i also ignores the mutual phases across realiza-
tions of the sampling spectrum (see fig. 3(b) for an illustration).
The periodograms of uniform jitter and regular grid sampling are
identical, suggesting that the periodogram is an unreliable tool for
assessing bias and variance of stochastic sampling for integration.

2.5 Summary

We presented equations to express the bias and variance of numeri-
cal integrators in terms of the Fourier spectra of the sampling func-
tion and integrand. The phase information present in each instance
of the sampling pattern is essential for accurate prediction of bias
and variance. Knowledge of the amplitude of the expected sampling
spectrum is useful for bias prediction. Knowledge of the variance
of the real and imaginary parts of the sampling spectrum are useful
for predicting variance. Next, we present a simple variant of strati-
fied sampling, and derive the expected value of its spectrum hˆS(!)i
and the variance of its magnitude spectrum V

⇣
|ˆS(!)|

⌘
.

3 Case study: Gaussian jittered sampling

We analyze a variant of jittered sampling, where samples on a reg-
ular grid are perturbed by independently drawn random variables
from a radially symmetric Normal distribution. We call this Gaus-
sian jitter and choose to analyze this strategy since Gaussians can be
radially symmetric and generalize naturally to higher dimensions.
In addition, our quantitative experiments reveal that Gaussian jit-
ter has surprisingly good convergence properties (fig. 5). Formally,
we perturb each X

i

to be X
i

+  where the  are drawn indepen-
dently for each i, from a Normal distribution with a zero mean and
a variance of �2.

Let ˆS0
(!) be the Fourier transform of the sampling function with

the Gaussian perturbation. We assume that the X
i

are fixed3 across
instances of jittered sample sets, and derive the expected value and
variance of the Fourier transform of Gaussian jittered samples to be

hˆS0
(!)i ⇡2

✓
1� (2⇡!�)2

2

◆
ˆ???

N

(!)

N
and (8)

V

⇣
ˆS0
(!)

⌘
⇡2

(2⇡!�)2

N
(1 + 2(⇡!�)2) (9)

respectively. We use ⇡2 to denote second order approximation. The
derivations are shown for the more general case, in appendices A
and B, where the sampling spectrum is some general ˆS(!) (before
adding jitter).

3we derive variance for fixed X
i

(Appendix B), but we derive the ex-
pected spectrum for potentially stochastic X

i

(Appendix A)
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(a) |hˆS0
(!)i : hˆS(!)i| (b) V

⇣
ˆS(!)

⌘

Figure 4: Heat-maps showing the effect of the jitter parameter �.
(a) At each !, � corresponding to the light blue region (ratio is 1)
implies that the bias is not modified. The dark blue region is where
bias is reduced, and the yellow region introduces severe bias. (b)
Choosing � to be in the dark blue region contains the variance at
the corresponding frequency. Best viewed on screen.

The first observation is that hˆS0
(!)i = �(!) when hˆS(!)i = �(!).

That is, Gaussian jitter does not introduce bias in the estimator if
applied on samples that originally had pure DC as their expected
spectrum. The second observation is that, if applied on a biased
estimator, the � parameter can be used to modify the degree of bias.

In general, setting � = 0 implies no jitter and therefore zero vari-
ance. As � is increased, the variance increases. Figure 4(b) shows a
heat-image of the variance as a function of the jitter parameter and
frequency.

For bias, however, the first term on the rhs of eq. 8 suggests a less
intuitive dependence on �. Figure 4(a) shows |hˆS0

(!)i : hˆS(!)i| as
a heat image, over the jitter parameter and frequency. The light blue
area (where the ratio is unity) is the range of � where the jitter does
not modify the sampling spectrum at the corresponding frequency.
The dark blue region, is where the corresponding � reduces the bias.
Beyond the yellow region, the jitter increases bias. If the integrand
is known to contain energy in the higher frequencies, then � must
be chosen to be small enough to fall in the blue region, to reduce
bias.

In all our experiments, we report � as a fraction of the average
sampling rate along each dimension. The actual parameter used in
the experiments is the reported � divided by

p
N (for 2D sampling).

4 Results

4.1 Spectral measurement

Figure 2 plots three statistics of the spectrum of sampling patterns,
over multiple realizations of the sampling function. We drew 256
2D samples using 5 different strategies, computed the statistics over
20 iterations on a 512 ⇥ 512 grid, and plotted their radially aver-
aged values. Figure 2(a) shows the periodogram, or averaged power
spectrum over the iterations, against frequency. Figure 2(b) shows
the amplitude of the expected sampling spectrum averaged with
phase over the iterations, against frequency. Figure 2(c) is of the
variance of the sampling spectrum, computed as shown in eq. 6,
against frequency. The periodogram is often considered sufficient
for the analysis of sampling patterns. Not only do the latter two
statistics reveal rich information about the sampling, but they also
provide intuition about the bias and variance if the samples were
to be used in numerical integration. For example, if the integrand
is known to contain high frequencies, say between the 100

th and
200

th coefficients, Figure 2(b) and (c) coupled with eqs. 4 and 5

reveal that Poisson disk sampling (cyan) and Gaussian jitter with
� = 0.1 (blue) are more likely to increase bias but reduce variance.

4.2 Quantitative tests

We performed quantitative measurements by estimating the inte-
gral of hypothetical pixels using the test cases. In each case, we
estimated the integrals of simple functions using secondary esti-
mators using various sampling strategies. We plotted the normal-
ized variance of the estimators against the error of the averaged
secondary estimators for each strategy (figs. 5a, b and c). Each
sampling strategy results in a point on this plot, where the vertical
axis corresponds to averaged variance and the horizontal axis is the
averaged deviation from the analytically computed reference value.
With Gaussian jitter (brown triangles), increasing � decreases the
bias at the cost of increased variance. However, the resulting vari-
ance is still comparable to quasi-random sequences. Furthermore,
we plotted the variance as a function of the number of primary esti-
mates N used in each realization of the secondary estimate (figs. 5d,
e and f). A larger negative slope on this plot indicates faster con-
vergence of the secondary estimator (see fig. 6 for a summary of
observed convergence rates).

The data for all plots were generated by averaging errors over 10
random instances of each of the test cases. For each instance of the
test case, 50 iterations of the secondary estimator were used with
up to 1024 primary samples. To allow comparison across instances
of the test cases, we computed relative errors: Mean of the sec-
ondary estimates divided by the analytical mean; and variance of
the secondary estimates divided by their squared mean. We used
the method of Gamito and Maddock [Gamito and Maddock 2009]
for the Poisson disk sampling and Matlab’s implementation for all
the low-discrepancy samples (with scrambling).










Test case I We integrated occlusion due to four half-planes within a
square pixel. To allow simple computation of the occlusion area an-
alytically, we constructed the half-planes so that they do not overlap
in the pixel. That is, we drew four random samples (green points),
one on each side of the square pixel, and connected them to form a
quad. Each evaluation of the function returns 0 if the location lies
in the quad and 1 otherwise. As reference, we computed the shaded
area analytically.

Test case II We integrated a piecewise constant function within a
square pixel. We obtained the function by sparse, random sampling
of the square domain, Delaunay triangulation of the samples and
random allocation of weights to each of the triangles. Each eval-
uation of the function returns the weight of the triangle in which
the query point is located. The analytical integral was obtained as a
weighted sum of the triangles.

Test case III We integrated a piecewise linear function within a
square pixel. This case is similar to II, with the difference that the
random weights were allocated to the vertices and linearly interpo-
lated within the triangles.
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Figure 5: Plots depicting results from our quantitative experiments. The three columns correspond to the test cases described in sec. 4. The
plots on the first row chart different strategies over the space of variance against accuracy (indicator of bias). Gaussian jittered sampling
(brown triangles) can be adapted using � to mitigate the bias due to regular sampling at the cost of adding variance. The plots on the second
row compare the variances of the various strategies over 50 realizations, for different values of N . Gaussian jitter (brown lines) converge
faster (larger slope) than other techniques. “LHCube” is latin hypercube sampling, “BJittered:0.1” is box-jitter within 0.1 times the width
of each stratum and “GJittered:0.25” denotes Gaussian jitter with � = 0.25.

I: binary II: p/w const III: p/w linear

Random O(N�1.0020
) O(N�0.9745

) O(N�1.0098
)

Poisson disk O(N�1.0605
) O(N�1.1902

) O(N�1.3629
)

Jittered O(N�1.4171
) O(N�1.1877

) O(N�1.5003
)

Sobol O(N�1.0200
) O(N�1.0374

) O(N�1.0879
)

Halton O(N�1.4233
) O(N�1.2927

) O(N�1.5890
)

LHCube O(N�1.0112
) O(N�1.1255

) O(N�1.0903
)

Hammersley O(N�1.3813
) O(N�1.2324

) O(N�1.7772
)

BJittered:0.1 O(N�1.8969
) O(N�1.6161

) O(N�1.7370
)

GJittered:0.1 O(N�2.2478
) O(N�2.1373

) O(N�2.6781
)

GJittered:0.25 O(N�2.1368
) O(N�1.9015

) O(N�2.5759
)

GJittered:0.5 O(N�1,9464
) O(N�1.7070

) O(N�2.3969
)

GJittered:1 O(N�1.7542
) O(N�1.5311

) O(N�2.0955
)

Figure 6: Observed empirical convergence rates for the three test
cases (from figs. 5d, e and f).

4.3 Qualitative tests: Rendering

We incorporated Gaussian jittered sampling, in 1D and 2D, within
PBRT [Pharr and Humphreys 2010]. We tested integration over one
and two dimensional domains. In one dimension, we tested Integra-
tion over time for motion blur 9. In 2D we performed integration
over light sources 8 and the lens aperture for defocus 7.

For low sampling rates (first rows of 7 and 9), as expected, the
grid introduces obvious aliasing artifacts while random sampling
has high variance. Low discrepancy sampling has lower variance
than random sampling, but the noise is still prohibitive. Gaussian

jitter allows a smooth transition, using �, from noise to banded ar-
tifacts. Uniform jitter shows some banding because, with few real-
izations, the influence of the regular grid is high.

5 Discussion

Trading bias for variance The regular grid yields a simple but
biased estimator for integration. Since the estimator is consistent, it
is useful when a large number of samples is used. At low sampling
rates, our theory predicts that gaussian jitter may be used to reduce
bias at the cost of increased variance, using a single parameter �.

Variance of the sampling spectrum Spectral assessment of sam-
pling patterns is typically performed using averaged power spectra
(periodograms). Our theory derives that the variance of the sam-
pling spectrum, over these iterations, provides a more reliable mea-
sure of the quality of integrators built using the sampling patterns.
For example, consider the periodogram of a random offset and ran-
dom rotation applied to a 2D regular grid. The spectrum, on av-
erage, is a set of concentric circles with peaks located close to the
peaks of traditional “blue noise” distributions in computer graphics.
The average radial energy distribution and anisotropy, according to
the periodogram, might seem appealing. Yet each instance of the
pattern is perfectly regular!

Spectrally-motivated sampling for integration Equation 5 is a
preliminary step towards spectrally-motivated sampling for numeri-
cal integration. For integrating a specific integrand, given partial in-
formation (say its amplitude or power spectrum), a desirable spec-
tral distribution for the sampling pattern may be worked backwards
from eq. 5. Then recent algorithms that can generate point samples

7



To appear in ACM TOG 32(4).

PBRT-LD uniform jitter random G.Jitter: � = .5 G.Jitter: � = .25 G.Jitter: � = .1 grid
16
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p

Figure 7: Comparison of bokehs resulting from different sampling strategies over a combination of the image and lens, using path tracing.

PBRT-LD uniform jitter random G.Jitter: � = .5 G.Jitter: � = .25 G.Jitter: � = .1 grid

1
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p
4

sp
p

16
sp

p

Figure 8: Soft shadows computed using 1, 4 and 16 secondary estimates per pixel (rows). A constant N = 16 visibility rays were used
towards the light source (disc) placed above a square occluder. � can be used to provide a continuum between the biased structure due to the
grid and the variance of PBRT’s low-discrepancy sampler.

PBRT-LD uniform jitter random G.Jitter: � = .5 G.Jitter: � = .25 G.Jitter: � = .1 grid
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p
4
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p
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sp

p

Figure 9: A comparison of the estimated motion blur integrated using different sampling strategies, using path tracing. At 4 spp, the bias
of the regular grid creates objectionable artifacts. Gaussian jitter allows its trade-off for increased variance. This variance is comparable
qualitatively to that of low-discrepancy sampling. At 64 spp, the result using a regular grid is qualitatively comparable to the result using
low-discrepancy sampling.
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with a specified noise spectrum [Zhou et al. 2012] may be used to
actually generate the samples for integration.

Bounded domain sampling Two approaches may be taken to ap-
ply Fourier analysis to a bounded domain [0, T ]. The first is trun-
cation, and assumes that the function is zero outside [0, T ]. Our
absorption of the boxcar function in the integrand (eq. 2) takes this
path. This approach runs the risk of introducing spurious frequen-
cies due to the truncation, particularly if the domain is comparable
to the scale of variation in the signal. The second is repetition,
which assumes that the function is periodic with period T . We use
this approach to derive that the expected spectrum of uniform jitter
contains only DC (see Appendix C).
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Figure 10: Combining uniform jitter with offset parameter � and
our Gaussian jitter with parameter �. Plots of variance and bias
when the combined estimator was used to integrate the zone plate
function. When ↵ = 0, �2

= 0 (deterministic sampling, regular
grid) the variance is zero and the bias is maximum. When ↵ =

1, �2
= 0 (uniform jitter), the bias vanishes. In this example,

the bias is still always lower than with regular grid sampling. The
gray planes show the variance and bias of Poisson-disk sampling
(similar number of samples).

Connection with uniform jitter Each realization of uniform jitter
is a regular grid, with an overall offset. However, in our case, each
realization contains samples that are independently jittered, Nor-
mally, from the grid centers. We experimented with combining our
algorithm with uniform jitter. That is, for each realization, we apply
a Gaussian-jitter on each sample obtained using uniform jitter. We
varied the offset � (for uniform jitter) applied to the grid, and mea-
sured the average bias and variance while integrating a zone plate
(see fig. 10).

Connection with box-jitter A simple alternative to Gaussian jit-
ter is to simply jitter with a rectangular distribution where the dis-
tribution is narrower than the size of each stratum. For example,
half-jittered sampling [Shirley 1991] only samples half the area of
each stratum. We derive the expected spectrum and variance of the
spectrum due to box jitter as

hˆS0
(!)i ⇡2

✓
1� (2⇡!�)2

6

◆
ˆ???

N

(!)

N
and (10)

V

⇣
ˆS0
(!)

⌘
⇡2

(2⇡!�)2

N

✓
1

3

+

4

45

(⇡!�)2
◆
, (11)

by proceeding exactly as for Gaussian jitter (starting from eq. 12),
except that we use the first, second and fourth order central mo-
ments of the rectangular distribution in [��,�] instead of those of
the Normal distribution. While the variance of box-jitter is lower,
its bias is high in several settings. The bias comparison plot (fig. 11)
compares the bias introduced by box and Gaussian jittered sampling
for various values of �.

Lattice structure Recent work [Keller et al. 2006] suggests that
using other lattice structures than a square grid is beneficial for an-
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Figure 11: Comparison of box-jitter and Gaussian jitter. Left:
plots of the ratio of the rhs of equations 10 and 8 for various �.
Box jitter is more biased if the integrand contains energy at fre-
quencies where the ratio is greater than 1. Right: plot of the ratio
of the rhs of equations 11 and 9 for various �.

tialiasing. Our algorithm for generating the samples does not re-
quire a square lattice. The analysis and use of the samples to design
a Monte Carlo estimator will depend on the lattice used.

Anisotropy Anisotropy can be interpreted in two ways. First, there
is anisotropy of a given set of samples. This is a useful measure
since it describes propensity of the samples to structure. There is
also the notion of anisotropy of a particular strategy, obtained by
averaging the power spectrum over multiple runs (periodograms).
The latter is less informative. Again, consider a regular grid with a
uniformly random rotation. Its anisotropy is high for a given set of
samples, but vanishes when averaged over multiple realizations.

6 Conclusion

We studied the spectral characteristics of stochastic sampling pat-
terns over multiple realizations of the patterns according to a fixed
strategy. We derived formulae for the bias and variance of stochas-
tic integration in terms of the the Fourier spectrum of the underlying
stochastic sampling strategy.

We presented two new measures of the quality of sampling strate-
gies in terms of their suitability to application in integration: The
amplitude of the expected sampling spectrum and the variance of
the sampling spectrum. We used these measures to assess Gaussian
jittered sampling and compared it with box-jitter. Both algorithms
controllably enable the reduction in bias due to uniform (grid) sam-
pling in exchange for slight variance. We verified our results using
quantitative experiments that suggest that Gaussian jitter has better
convergence than a number of strategies that are currently used.
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MATÉRN, B. 1986. Spatial Variation, 2nd ed. Springer Verlag.

MITCHELL, D. P., AND NETRAVALI, A. N. 1988. Reconstruction
filters in computer-graphics. SIGGRAPH Comput. Graph. 22
(June), 221–228.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. M. C. Stone, Ed., vol. 21, 65–72.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribu-
tion ray tracing. T. W. Sederberg, Ed., vol. 25, 157–164.

MITCHELL, D. P. 1992. Ray Tracing and Irregularities of Distri-
bution. In Third Eurographics Workshop on Rendering, 61–69.

MITCHELL, D. 1996. Consequences of stratified sampling in
graphics. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, ACM, 277–280.

NEYMAN, J. 1934. On the two different aspects of the represen-
tative method: the method of stratified sampling and the method
of purposive selection. Journal of the Royal Statistical Society
97, 4, 558–625.

NIEDERREITER, H. 1992. Quasi-Monte Carlo Methods. John
Wiley & Sons, Ltd.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. ACM
Trans. Graph. (Proc. SIGGRAPH) 26, 3 (July), 78:1–78:6.

OUELLETTE, M. J., AND FIUME, E. 2001. On numerical solu-
tions to one-dimensional integration problems with applications
to linear light sources. ACM Trans. Graph. 20, 4 (Oct.), 232–
279.
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A Gaussian jitter of stochastic samples: Ex-

pected spectrum

Consider a sampling signal with just one sample X
i

. That is
S(x) = �(x�X

i

), i = 1. If S0
(x) is the sampling function after a

Guassian jitter by  , then the expected spectrum after jitter is

ˆS0
(!) = cos(2⇡!(X

i

+  )) + ı sin(2⇡!(X
i

+  )

Let a
i

and b
i

denote its real and imaginary parts. The Taylor’s
series expansion about h i = 0, of the imaginary coordinate
b
i

( ) = sin (2⇡!(X
i

+  )) can be written as

b
i

( ) ⇡ sin(2⇡!X
i

) + 2⇡! cos(2⇡!X
i

) �
(2⇡!)2 sin(2⇡!X

i

)

2!

 2 � (2⇡!)3 cos(2⇡!X
i

)

3!

 3
+ · · ·

(12)

Applying the expectation operator on each side of the equation,
truncating and substituting sin(2⇡!X

i

) = =(hˆS(!)i),

hb
i

i ⇡2 (1� (2⇡!�)2

2

)=(hˆS(!)i).

Deriving the real part of the expected spectrum in similar fashion,
and extending to N samples, S0

(x) = �(x �X
i

�  
i

), i = 1..N
to contain N impulses, its expected Fourier transform is

hˆS0
(!)i ⇡2

1� 2(⇡!�)2

N
hˆS(!)i. (13)

B Gaussian jitter of fixed-location samples:

Variance of spectrum

When the X
i

are fixed and the jitter amount,  , is the only variable,
we can apply the variance operator to eq. 12. Then

V (bi) ⇡2 (2⇡!�)2
 
cos

2
(2⇡!Xi) +

(2⇡!�)2 sin

2
(2⇡!Xi)

2

!

and similarly, the variance of the real part of hˆS0
(!)i

V (ai) ⇡2 (2⇡!�)2
 
sin

2
(2⇡!Xi) +

(2⇡!�)2 cos

2
(2⇡!Xi)

2

!

Adding V (

P
a
i

/N) + V (

P
b
i

/N) yields the result in eq. 9.

C Spectrum for uniform jitter (1D)

In this case, the single random sample, periodically repeated, forms
a Dirac comb (Shah function) with period T and an offset of x1.
Its Fourier transform is also a Dirac comb, with period 1/T and a
phase offset of e

�ı2⇡x1! . That is,

S(x) =

X

j2Z
�(x+ jT � x1) and

ˆS(!) = e

�ı2⇡x1!
X

j2Z
e

�ı2⇡(�jT )!. (14)

Since S(x) is periodic, ˆS(!) can only be non-zero at ! =

k/T, k 2 Z. Substituting this into eq. 14, we obtain

lim

!!k/T

ˆS(!) = e

�ı2⇡kx1/T
lim

!!k/T

�(! � k/T )

since the exponential term in the summation is unity for each ! =

k/T . If x1 is uniformly randomly distributed in [0, T ] (random
sampling),

h lim

!!k/T

ˆS(!)i = h e�ı2⇡k&i lim

!!k/T

�(! � k/T )

=

⇢
�(!) if k = 0

0 otherwise
(15)

where h.i denotes the expected value operator and & = x1/T is a
random variable uniformly distributed in [0, 1]. Equation 15 shows
that, for a randomly offset Dirac comb, the amplitude of the ex-
pected Fourier spectrum is zero everywhere but at ! = 0.
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