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ABSTRACT OF THE DISSERTATION

Sampling Strategies
for Efficient Image Synthesis

By

Kartic Subr

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2008

Professor James Arvo, Chair

The gargantuan computational problem of light transport in physically based image

synthesis is popularly made tractable by reduction to a series of sampling problems.

This reduction is a consequence of using Monte Carlo integration at various stages of

the transport process. In this document we describe analytic and computational tools

for efficient sampling, and apply them at three stages of the light transport process:

Sampling the image, sampling the camera aperture and sampling direct illumination

due to distant light sources. We also adapt a standard statistical technique of induc-

tive inference to assess different Monte Carlo sampling strategies that solve the light

transport problem.

First, we derive a closed-form parameterization that allows the generation of stratified

samples according to a linear density function with triangular support. We use this

for stratified sampling of importance functions that are piecewise linear.

Next, we describe a new importance sampling strategy with the novel ability to

draw samples from a dynamic steerable importance function. Contrary to existing

techniques, the steerability of the importance function ensures that no wasted samples

are generated in regions where the steering function is zero. We demonstrate its

x



effectiveness in the context of direct illumination from distant light sources, where

the incident all-frequency illumination is steered by a dynamically orientable positive

cosine lobe that is a function of the local normal.

We extend existing theory for studying the radiance function in the frequency domain:

We define operators for frequency domain light transport and use them to present a

novel analysis of finite aperture cameras in the Fourier domain. Using this analysis,

we derive a new sampling algorithm that performs an order of magnitude better than

current techniques for simulating depth of field correctly.

Finally, we discuss a novel adaptation of standard statistical hypothesis tests for as-

sessing and comparing Monte Carlo estimators. We demonstrate that this framework

can be used to make assertions about the means and/or variances of Monte Carlo

estimators in image synthesis, upto a chosen level of significance. Besides comparing

estimators, we verify that the framework can be used to detect errors in estimators

and sampling algorithms.
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Chapter 1

Introduction

Georges-Louis Leclerc, Comte de Buffon is often credited with having used the first

known Monte Carlo1 algorithm in his famous “needle experiment”, in 1777, to esti-

mate the value of π. He was one of several mathematicians in the seventeenth and

early eighteenth centuries who were motivated by games of chance to form sequences

of random events based on observations of successive trials. However, it was not

until the nineteenth and early twentieth centuries when mathematicians made the

observation that the mean of a function of continous random variables took the form

of an integral. It was followed by the realization that, in principle, one could ran-

domly draw numbers and proscribe transformations such that the random numbers

could be used to approximately solve integration problems that contained no inherent

probabilistic structure.

By the late nineteenth century, Lord Rayleigh [87] showed that a one dimensional

random walk could be used to approximately solve a parabolic differential equation.

Following this result, Courant et al. [4] demonstrated that a particular finite differ-

1The term “Monte Carlo” was coined almost 200 years later. Today, Monte Carlo methods
encompass all techniques that use statistical sampling to approximate solutions to quantitative
problems.
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ence equation could be used to approximate a solution to the Dirichlet boundary-value

problem of partial differential equations. Subsequently, they showed that a recursive

form of the solution to a two dimensional random walk on a square grid within a closed

regions, under certain conditions, produced an identical difference equation. Around

the same time, Kolmogorov derived the relationship between Markov stochastic pro-

cess and certain integro-differential equations. Petrowsky generalized the result of

Courant et al. by showing the asymptotic connection between a random walk whose

sequence of locations formed a Markov chain and the solution to an elliptic partial

differential equation; Petrowsky called this the generalized Dirichlet problem.

In the early thirties, Enrico Fermi used the Monte Carlo method to run simulations

of particle transport through isotropic media (neutron diffusion) that were central to

the research towards building the atomic bomb. Fermi later developed the Fermiac

which was a Monte Carlo mechanical device used to calculate criticality in nuclear

reactors. The associated multidimensional problems proved too formidable for the

popular difference equation approach and inspired John von Neumann and Stanislaw

Ulam to suggest that sampling experiments using random walk models on the newly

developed digital computer could provide useful approximations.

Ulam is credited with inventing the name “Monte Carlo”2 and, with the help of

von Neumann and Nicholas Metropolis, the name soon caught on to refer to methods

that employed statistical sampling to approximate solutions to quantitative problems.

2Ulam described the incident as follows: “The first thoughts and attempts I made to practice
[the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was
convalescing from an illness and playing solitaires. The question was what are the chances that a
Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time
trying to estimate them by pure combinatorial calculations, I wondered whether a more practical
method than abstract thinking might not be to lay it out say one hundred times and simply observe
and count the number of successful plays. This was already possible to envisage with the beginning
of the new era of fast computers, and I immediately thought of problems of neutron diffusion and
other questions of mathematical physics, and more generally how to change processes described
by certain differential equations into an equivalent form interpretable as a succession of random
operations. Later [in 1946, I] described the idea to John von Neumann, and we began to plan
actual calculations.”
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Figure 1.1: Left: A portrait of Georges-Louis Leclerc, Comte de Buffon by the French
painter François-Hubert Drouais. Middle: Stanislaw M. Ulam. Right: John von
Neumann. Although Count Buffon is commonly credited with the earliest known use
of a Monte Carlo algorithm, Ulam was responsible for naming and formalizing the
method. Much of the theoretical foundation for the method was laid by John von
Neumann.

Ulam and Metropolis published the first paper [69] describing this method, as it is

known today. The use of Monte Carlo methods spread rapidly to several different

scientific disciplines.

Developments in the field of computational complexity, in the seventies, began to pro-

vide a more precise and persuasive rationale for using the Monte Carlo method. The

theory identified a class of problems for which exact solutions often led to algorithms

that executed in times that were, at best, exponential with respect to the size of the

input. The identification of a certain structure in these problems could be exploited

to provide exact solutions in times that were bounded, above, by polynomials in the

size of the input. Without this structure, problems that belonged to this class seemed

to pose a formidable hurdle to solve.

There was a rising interest in trying to resolve the question of whether Monte Carlo

could be used to estimate solutions to problems in this intractable class to within some

3



Figure 1.2: The Monte Carlo casino in Monaco. Ulam named the method after this
casino where his uncle would borrow money to gamble.

statistical accuracy in a time bounded, above, by a polynomial in the size of the input.

Several attempts were made in the eighties: Karp estimated reliability in a planar

multiterminal network with randomly failing edges [53] ; Dyer et al. estimated the

volume of a convex body in m-dimensional euclidean space [38]; Broder estimated

the permanent of a matrix or, equivalently, the number of perfect matchings in a

bipartite graph [17].

Integro-differential equations were applied to problems in radiative transfer [22] which

inspired research in neutron transport [100] and hydrologic optics [83]. Recognizing

the similarities of these problems to that of light transport for global illumination (see

Section 1.2), Kajiya presented a simplified integro-differential equation [52] that he

called the rendering equation. The rendering equation sufficiently represented the flow

of radiant light energy under the many assumptions that were considered practical for

use in computer graphics related problems. Further, it provided the means to express

4



Figure 1.3: Stanislaw M. Ulam, Richard P. Feynman and John von Neumann. The
Monte Carlo method was inspired by the problems encountered conducted during the
development of the atomic bomb. (Picture scanned at the American Institute of
Physics)

the transformations of radiant light energy while accounting for several geometric

optical effects. The realization that the solution of the rendering equation (and its

many variants) would yield global illumination effects like multiple inter-reflection,

refractions, scattering within media, penumbrae of shadows, etc. sparked off a flurry

of Monte Carlo research within the graphics community.

Despite the mathematical sophistication that the Monte Carlo method is often imbued

with, it is the simplicity of the method that has brought about much of its popularity.

Ulam, von Neumann and others recognized that the Monte Carlo method could be

modified in ways that produced solutions to the original problems with a specified

error bound, at considerably reduced cost. Although some of these variance reduction

techniques were already commonly used by statisticians, others owe their origin to

the Monte Carlo method. Collectively, these procedures now represent the central

focus of the Monte Carlo method by exploiting available structure that the method

fundamentally ignores.

5



During the early years of the “computer age”, the application of variance reduction

techniques was essential in practicably estimating solutions to large numerical prob-

lems. The design of these techniques was far from trivial and thus took a considerable

amount of time to develop. Although many of these techniques were general, the ef-

ficiency to be gained by tailoring them to a particular application was so large that

analysts typically spent a large amount of time performing the customization.

The dramatic increase in computational power over the last couple of decades trig-

gered two remarkable changes: it became feasible to run Monte Carlo simulations on

small, commodity microcomputers; supercomputing power became powerful enough

that problems of much larger scale were solvable. The result of this stupendous in-

crease in computational power also spawned the need for assessing whether it was

more beneficial to just throw large amounts of computing power at problems rather

than recruit analysts to design specialized variance reduction schemes.

Nevertheless, the motivations for sophisticated variance reduction techniques are

many: Problems of substantial size still remain; certain applications demand that

problems be solved in lesser time than currently possible; certain other problems de-

mand extremely high statistical accuracy in the estimated solutions. Thus, the benefit

of using and designing new variance reduction techniques cannot be undermined.

Variance reduction strategies can be classified, based on their philosophy, into at least

two different categories: Some strategies modify the way in which random samples

are generated and adjust the parameter estimator of interest in a way that variance

is reduced. e.g. Importance sampling, stratified sampling, correlated sampling, etc.;

Other strategies operate by leaving the sampling mechanism unaffected—instead,

they collect ancillary data that are used to estimate already known parameters. The

variance reduction due to the latter is achieved by incorporating these data into the

estimator of the unknown parameter of interest. e.g. Control variates.
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In this dissertation, we focus on the first of the two classes of variance reduction

schemes. We exploit certain structure that is known to exist in some light transport

problems in computer graphics to propose sampling strategies that cause a variance

reduction in estimated solutions for those problems. We also present an adaptation of

the statistical framework for testing hypotheses, that can be used to assess qualities

of estimators, upto specified levels of statistical significance.

1.1 Digital image synthesis

Digital photography produces images where each pixel represents the incoming radi-

ant light energy over a small area on the sensor within a small set of directions in

a controlled length of time. Light energy propagates from light sources in the scene

and potentially travels through a sequence of infinite bounces on multiple objects

before passing through the camera lens and aperture and finally impinging on the

camera sensor. The image obtained is a snapshot of the result of several physical

processes involving the transport of light energy from luminaires through the scene

to the sensor in the camera.

A popular problem in the field of computer graphics is to produce images by mim-

icking photography starting from geometric and physical descriptions of the scene of

interest (see Figure 1.4). This transformation, from geometric and physical informa-

tion into images is called image synthesis. One way of solving this problem to obtain

“realistic” images, is to make certain assumptions about the scene and to simulate

the process, respecting physical laws to some degree. This is referred to as physically

based image synthesis. The ultimate goal of physically based image synthesis is to

produce images that are indistinguishable from photographs of the real world, by

simulating the physical process involved.

7



Figure 1.4: Physically based mage synthesis is the process of producing images by
simulation of light transport to mimic the photographic process. Suitable models are
chosen for the camera and objects in the scene.

Physically based image synthesis incorporates results from four large fields of study:

(1) mathematical, physical and structural representation of objects, (2) digital signal

processing, (3) the interaction of matter and light and (4) the human visual sys-

tem. Extensive research in these fields has resulted in a large body of literature and,

consequently, sophisticated methods for several interesting problems in the field of

physically based image synthesis.

1.2 Light transport

A significant fraction of the computational effort in physically based image synthesis

is dedicated towards simulation of specific optical phenomena. The simulation of

the propagation of light energy is referred to as the light transport problem. Several

light transport algorithms exist for simulations with varying degrees of accuracy and

subject to dramatically different constraints. For example, the focus is on absorption

8



Figure 1.5: Measured, simulated and error images of a scene. This famous scene,
called the Cornell Box, was setup by researchers in Cornell University’s Light Mea-
surement Laboratory. The potential for multiple interreflections between diffuse sur-
faces and the availability of measured parameters of illumination of reflection made
this scene a popular choice for verifying global illumination algorithms. (Source: Cor-
nell University Light Measurement Laboratory)

and scattering processes in biomedical imaging while, in image synthesis, a lot of effort

is directed towards improving reflection models. Applications in hydrologic optics [83],

like biomedical imaging applications, consider scattering processes in great detail but

demand higher precision of the estimates.

Global illumination algorithms are those that solve the light transport problem for

physically based image synthesis. These algorithms approximately simulate the po-

tentially infinite interactions of light with matter, before finally entering the optical

system of the virtual camera. The degrees of accuracy to which simulations are run

in physically based image synthesis—since the goal is to produce images that are

indistinguishable from photographs—is governed by the limits of human perception.

Solutions to several light transport problems are inspired by transport solutions

adopted in heat transfer [31] and neutron transport [100]. In a seminal work in

image synthesis, Kajiya proposed an integral equation [52] which expressed the radi-

ant light energy leaving a point, along a certain direction, as the sum of the emitted

radiant energy in that direction and reflectance-weighted radiant energy incident at

the point from all possible directions. The presentation of the light transport prob-

9



lem in this form, captured the commonality of different global illumination algorithms

that existed at the time.

The potentially unpredictable behaviour of the functions in the rendering equation,

coupled with the high dimensionality of the domain and the complex interaction

of multiple physical processes make general analytical solutions unfathomable. The

equation is usually solved either using Monte Carlo or finite element methods.

1.3 The Monte Carlo method

Ulam and Metropolis proposed a strategy [69] that used statistical sampling to nu-

merically solve quantitative problems, which they called the Monte Carlo method.

They were inspired by large and complex quantitative problems for which analytical

methods were hopeless and typical numerical methods collapsed.

Monte Carlo methods typically consist of two distinct processes: transformation of

the problem into an expectation and simulation. The former reduces the problem

to one of estimating E pXq where X is a random variable. Although this is usually

simple, as in the case of Monte Carlo integration, it can be a tricky problem if the

goal is, say, to solve parabolic or elliptical equations.

The second step involves the simulation of random variables under the distribution of

X. Mathematically, this means that a sequence of random variables pXi, 1 ¤ X ¤ Nq
is obtained, such that the Xi follow the distribution of X. This is typically achieved

by computationally transforming random variables uniformly distributed in the unit

interval into the appropriate domain. Finally the required expectation is approxi-

10



mately estimated as

E pXq � 1

N
pX1 �X2 � ...�XNq (1.1)

One of the most popular uses of Monte Carlo methods has been for estimating the

value of integrals. The rest of this section provides a basic introduction to Monte Carlo

integration with the help of simple examples. Consider the numerical estimation of

the integral

1»
0

fpxq dx. (1.2)

There exist many numerical methods of the form
°n

0
wifpxiq where the wi are non-

negative weights that sum to unity and xi P r0, 1s. e.g. Trapezoidal integration

(wi � 1{n, 0   i   n, w0 � wn � 1{p2nq and xi � 1{n), Gaussian integration,

Simpson’s rule, etc. The basic Monte Carlo integration algorithm assumes the same

form, with wi � 1{n, 1 ¤ i ¤ n and xi that are randomly drawn from the domainr0, 1s. The convergence of this Monte Carlo integration scheme is Op1{?nq. Although

the rate of convergence seems poor when compared to other methods for this one

dimensional integration, the great advantage of this method is that it is insensitive

to the dimensionality of the domain. Typically numerical integration methods will

require nd points when the domain is the d-dimensional unit hypercube r0, 1sd for

estimates with constant error.

Consider the multidimensional integral

I � »
D

fpxq dx, (1.3)
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where the domain D � r0, 1sd and the variable of integration x � px1, x2, ...., xdq P D.

Following the first step of the Monte Carlo method, we set X � fpU1, U2, ..., Udq
where pU1, ..., Udq are independent random variables distributed uniformly in r0, 1s so

that we can write

E pXq � E pfpU1, U2, ..., Udqq � »
D

fpxq dx. (1.4)

Thus, we have completed the first stage of the Monte Carlo method, by writing the

quantity that we wish to compute as an expectation.

In the simulation phase, a sequence pUiq is generated such that each Ui is uni-

formly distributed in r0, 1s. Then random variables Xi are constructed so that

X1 � fpU1, U2, ..., Udq, X2 � fpUd�1, Ud�2, ..., U2dq, etc. The required integral is

estimated as

I � 1

N
pX1 �X2 � ... �XNq (1.5)

Often, the integrand is expressible as the product of two functions, fpxq � gpxqhpxq
where h is non-negative and integrates to unity. In such cases, the integral can be

written in the form E pgpY qq if Y is a random variable distributed according to hpxq.
Consequently, the integral can be approximated as

I � 1

N
pgpY1q � gpY2q � ...� gpYNqq (1.6)

where the Yi are distributed according to hpxq. Thus the problem of integration is re-

duced to one of generating samples according to a certain distribution. This technique

is referred to as importance sampling in Monte Carlo literature, and hpxq is called

the importance function. Two of the most attractive features of importance sampling
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are that 1) the distribution used to reduce variance need only be an approximation,

and 2) no bias is introduced so long as we can correctly compute the density of the

samples generated.

The use of this deceptively simple method for general integration problems often

warrants sophisticated mathematical verification to ensure that the correct quantity

is being estimated, and with an acceptable amount of error in the estimates.

The strong law of large numbers imposes a theoretical limit on the Monte Carlo

method: The method can only be used with integrable random variables. The central

limit theorem can be used to derive a random variable, that is asymptotically equal

to the error, which suggests that the distribution of E pXq � 1

N
pX1 �X2 � ... �XNq

resembles a centered guassian.

1.4 The problem of sampling

The sampling process assumes different flavours, depending on the application do-

main. In statistics, a number of interesting sampling strategies were born out of

the need for estimating characteristics about populations [27] that were too large for

complete surveys to be conducted. In survey sampling, a small but carefully chosen

sample3 is used to represent the population. The sample is selected so that it reflects

the characteristics of the population that are of interest. In this context, the benefit

is that characteristics about the general population may be inferred from the samples,

without having to incur the cost of a comprehensive survey.

In signal processing, sampling refers to periodic measurements of a signal4. Thus,

3In statistics the term sample is used to mean a set of observations. In computer graphics, each
of the observations is called a sample.

4A physical quantity, usually measurable through time or space.
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sampling is central to all digital signal processing problems that deal with analog sig-

nals. When digital signals are involved, clever sampling strategies allow for compact

representations. If the original signals need to be reconstructed from sampled repre-

sentations, care is taken that the sampling strategies possess desireable characteristics

so that the reconstruction is of high fidelity.

Monte Carlo techniques use samples, drawn from meticulously designed parent dis-

tributions, to solve a host of different computational problems. One of the most

popular uses has been to solve integration problems. As seen in Section 1.3, Monte

Carlo integration reduces the integration problem to one of sampling.

Sampling methods are broadly classified as either probabilistic or non-probabilistic.

In probabilistic sampling, each member of the population has a known non-zero prob-

ability of being selected. eg. random sampling, systematic sampling and stratified

sampling. In non-probabilistic sampling, members are selected from the population

in some deterministic manner. eg. convenience sampling, judgment sampling, quota

sampling and snowball sampling. The advantage of probabilistic sampling is that

sampling error 5 can be calculated.

1.5 Sampling problems in image synthesis

In a Monte Carlo path tracer, an image is formed by computing the solution to the

light transport problem at each pixel, which is obtained by adding contributions from

a set of light paths. Each of the paths in a path tracer is constructed using a random

sequence of sampling procedures. The paths begin at the eye and are shot through

chosen locations on the virtual camera sensor. Subsequent vertices are chosen by

randomly choosing a direction and finding the first point along that direction where

5Sampling error is the degree to which a sample might differ from the population.
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the next interaction occurs. The random direction chosen at each vertex, is based on

a distribution that characterises the interaction of light with matter at that vertex.

A plethora of sampling strategies have been proposed in the literature that account

for several different types of light-matter interactions along the path.

Using Monte Carlo integration in the physically based image synthesis process reduces

the problem of light transport to a series of sampling problems: (1) sampling the pixel

area on the sensor or prefiltering; (2) sampling the camera aperture for simulating

depth of field; (3) sampling in time to simulate controlled camera shutter speed; (4)

sampling the reflectance or transmittance function to simulate glossy reflection or

transmission; (5) sampling the solid angle subtended by luminaires for simulating

penumbrae; (6) sampling paths for indirect illumination (due to interreflection); (7)

sampling in wavelength to account to simulate spectral effects (see Figure 1.6).

1.6 Importance sampling in image synthesis

Variance reduction strategies are crucial elements of Monte Carlo global illumina-

tion algorithms. Without them, it is generally regarded as impractical to obtain

adequately converged Monte Carlo solutions, particularly for environments that in-

corporate challenging lighting distributions and/or surface scattering functions. Since

the earliest systematic study of Monte Carlo algorithms in image synthesis [52, 29, 94],

both importance sampling and stratification have been recognized as being particu-

larly relevant variance reduction strategies, although it has often been a challenge to

incorporate them without simultaneously introducing statistical bias [57, 58]. Both

importance sampling and stratification are now commonplace in illumination com-

putations, and often appear in several guises within a single algorithm. While im-

provements to both strategies continue to be an active area of research, importance
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Visible spectrum: Monte Carlo
sampling of the visible wavelengths of
light allows simulation of optical phe-
nomena like dispersion [46, 39, 119,
33].

Image space: Adaptive image sub-
sampling algorithms allow fewer rays
to be cast and result in reduced alias-
ing artifacts [34, 28, 72, 101, 10, 70,
71].

Aperture: Depth of field effects are
simulated by integrating light paths
sampled over the aperture [81, 28].

Exposure time: Integrating light
paths sampled over time produces mo-
tion blur effects [30, 82, 55].

Reflectance functions: Glossy re-
flection and transmission are simu-
lated by integrating paths distributed
according to the reflectance distribu-
tion [11, 116, 62, 12, 64, 24].

Light sources: Direct illumination
computation involves integration of
paths over the solid angle subtended
by the light source [94, 2, 6, 8, 48, 26,
24].

Indirect illumination: Integrating
paths that perform multiple bounces
before reaching a light source simu-
lates indirect illumination due to in-
terreflections [79, 105].

Figure 1.6: Each step of the image synthesis pipeline can be simulated using Monte
Carlo integrations [30, 65]. Therefore the problem can be reduced to a series of sam-
pling problems over different domains. A number of solutions have been proposed for
each of these sampling problems. The integration domains are described on the right
with references to existing solutions for each domain.
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sampling offers the largest potential payoff, with the total elimination of variance be-

ing theoretically achievable [88]. The remainder of this section describes the evolution

of importance sampling in image synthesis chronologically.

1990-1995

Shirley compared the effectiveness of importance sampling in reducing variance, in

his thesis [93], against stratified sampling. He described how the method of inverting

the cumulative distribution may be used to generate samples according to a given dis-

tribution. The technique was later extended by Arvo and used for stratified sampling

of 2-manifolds.

Smits et al. defined importance [98] with respect to a viewpoint by propagating

importance from the viewpoint. similar to the transport of light energy from light

sources. While the paper showed a significant gain in computational efficiency by

performing low resolution radiosity solutions for less important areas, the notion of

importance is very different from the use of importance functions in Monte Carlo

algorithms.

Dutré et al. presented an importance sampling algorithm [37] for efficiently estimating

solutions to the rendering equation. They introduced the concept of adaptive proba-

bility distribution functions (pdfs), where the sampling density underwent sequential

modifications after each sample was drawn. To begin with, samples are drawn from

a constant density. Then, the domain is partitioned and the sample drawn, at each

step, is used to estimate the integral; based on the computed estimate density in the

corresponding interval of the pdf is modified.

Veach and Guibas presented a new perspective on importance sampling [112], with a

conservative strategy that avoided insufficient sampling of regions where the integrand
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was large. They decomposed the integrand into functions, identified regions in the

domain where any of these functions was large and ensured heavy sampling of these re-

gions. Although regions where the integrand is low could potentially be over-sampled,

they demonstrated the effectiveness of their technique using compelling experimental

evidence. They called their technique Multiple Importance Sampling (MIS).

MIS could be viewed as an extension to stratified sampling where the strata are not

strictly partitions of the sampling domain. That is, there could be overlap between

strata. In such a situation, samples drawn from different strata may correspond to

the same region of the sampling domain and, thus, need to be combined appropriately

to avoid bias. To address this problem, the estimate—which is obtained as a weighted

average of the results of a host of different estimators—is chosen to be produced by

an estimator that outperforms the others.

1996-2000

Shirley et al. further stressed the effectiveness of importance sampling as a variance

reduction strategy in a paper [95] where they derived densities for estimating direct

illumination. They derived the densities to sample the solid angle subtended by

illuminaires of a few common shapes, making the calculation of direct illumination

from several sources more efficient. Their importance function did not account for

the BRDF or visibility.

La Fortune et al. invented a class of primitive functions [62] with non-linear pa-

rameters for representing reflectance functions. They approximated the reflectance

distributions by sets of cosine lobes which made them simple, flexible and easy to use

in a Monte Carlo algorithm for sample generation. The class was powerful enough

to represent a wide variety of materials. This work was a significant contribution in

the context of importance sampling because sampling reflectance distributions, which
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poses a significant hurdle for realistic materials, was simply reduced to appropriately

sampling cosine lobes. Another similar method that unified definitions for a good

visual approximation for many materials was presented by Neuman et al. [74]. Their

model allowed fast importance sampling of physically plausible reflectance functions.

Since the notions of probability density and variance are not applicable in the context

of deterministic quasi Monte Carlo (QMC), the extension of importance sampling

is not straightforward to a QMC setting. Szirmay-Kalos et al. presented a QMC

algorithm with importance sampling [106], by using variable transformation. The

transformation was designed so that its Jacobian matrix was inversely proportional to

the integrand, thus resulting in a constant transformed integrand (which corresponds

to minimum quadrature error). They derived this transformation was derived by first

propagating direct illumintion using a photon tracing procedure.

Pietrek and Peter presented a method to adaptively construct pdfs for sampling

indirect illumination [79]. This work was an extension to the work by Dutré et al.

and was similar, in concept, to Szirmay-Kalos et al.’s method. Pietrek and Peter built

a hierarchical set of density functions that were successively refined as the estimate for

indirect illumination was estimated to more precision. By considering diffuse surfaces

and tesselating the surfaces into large patches, they reduced the 6 dimensional density

down to two dimensions per patch. They demonstrated using experiments with two

representations for the density functions— Haar and linear B-spline bases— that

there was no advantage of using higher order basis functions over piecewise constant

Haar bases. They concluded that, while the use of B-spline bases avoided certain

artifacts in specifically constructed examples, Haar wavelet bases performed better

for larger scenes without visible artifacts.

Bekaert et al. introduced the notion of weighted importance sampling (WIS) to the

image synthesis community, and used it to estimate form factors between patches
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while accounting for partial occlusion. In WIS, samples are drawn from an “easy-to-

sample” source function and are used in a way that suggests that they were drawn

from a different, more effective, target importance function. For unbiased estimates,

multiplication is required by weights given as the ratio of the target and source func-

tions evaluated at the sample locations. In their paper, Bekaert et al. used uniform

area sampling of patches in a radiosity solution as the source importance function

and mimicked a target importance function corresponding to cosine distributed di-

rectional sampling. Their experimental results indicate a reduced variance, although

they reported a bias when only a small number of samples were drawn.

2001-2008

Agarwal et al. defined an importance metric [3] for sampling direct, distant illumi-

nation by conservatively accounting for visibility and illumination. While sampling

direct illumination, giving importance purely to the magnitude of solid angle sub-

tended undersamples small bright lights. On the other hand, considering illumination

without accounting for the solid angle subtended oversamples small bright sources.

In an attempt to strike a balance, Agarwal et al. proposed the use of an importance

function that considered a carefully chosen combination of both, illumination energy

and solid area subtended. The precise blend was based on an empirical analysis of

visibility maps.

The environment map was first stratified based on thresholding functions applied to

the radiance values associated with each pixel. Then, sample allocation within strata

was based on the importance metric, and the pixels of each stratum were clustered

according to the allocation. During rendering, a random location was chosen within

each cluster and used to compute the estimate for direct illumination. Their paper

also describes a few optimizations: (1) approximating the environment map with a
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number of directional sources in a preprocess step; (2) eliminating banding artifacts

in (1) by using jittered sampling for visibility testing; (3) sorting light sources based

on their contribution and only considering the first few in the list so that the error in

the estimate is below a certain threshold.

Lawrence et al. presented a BRDF factorization technique [64] that allowed efficient

importance sampling of bidirectional reflectance functions (BRDFs) while simulata-

neously maintaining compact representation. They demonstrated, using analytic and

measured BRDFs, that their technique was more efficient than fitting Lafortune or

Blinn-Phong lobes and also more compact than tabulating the reflectance functions.

They represented the 4D, reparameterized BRDFs as the sum of a number of terms,

each of which was the product of a view-dependent 2D function and two 1D functions.

Importance sampling was achieved by numerical inversion of the 1D factors.

Ostromoukhov et al. presented a robust and practical algorithm [77] for generating

samples according to a 2D density function. While the method is effective in generat-

ing samples that satisfy desirable blue noise properties and with aspecified sampling

density within a local neighborhood, it is unclear how the weights associated with

these samples are to be normalized when used in the context of Monte Carlo integra-

tion. The paper demonstrates the use of this sampling algorithm to estimate direct

illumination from environment maps.

The use of control variates as a variance reduction strategy has not been explored in

depth by the image synthesis community. Szécsi et al. discussed the effectiveness of

using control variates (also called correlated sampling) [104] for sampling in Monte

Carlo integration in their paper which also presented a scheme to combine the benefits

of importance sampling and correlated sampling. Their approach was to introduce a

parameter which governed the weightage of estimates resulting from each sampling

strategy and then optimize the resulting estimate for minimum variance.
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Typically importance sampling had been used for drawing samples distributed accord-

ing to the local reflectance distribution, or illumination (both distant and nearby illu-

minaires) independently. Clarberg et al. [23] generalized wavelet products to higher

dimensions and applied it to sample from a product of the local reflectance function

and distant illumination. The algorithm exploits the property of wavelet products

that they can be evaluated top down. The paper then warped a set of uniformly

distributed points to match the approximated product distribution. However, the

constraint that all BRDFs in the scene be resampled as wavelets, makes it imprac-

tical in scenes with a large number of BRDFs. Also, the choice of wavelets as bases

inherently restricts rotation into local coordinate frames (in which BRDFs are con-

veniently represented). To work around this problem, wavelet decomposition of the

environment map was stored for different orientations. Cline et al. presented [25] a

similar approach, except that they use hierarchical partitioning of the environment

map à la McCool and Harwood [67] in conjunction with summed area tables instead

of wavelets.

Another work that sampled from both illumination and reflectance function was in-

vented in the same year by Burke et al. [19] who performed the sampling in two

stages: samples were drawn from the first distribution and then resampled according

to the second distribution. They introduced the terminology sampling-importance

resampling to represent a process that is quite similar to WIS. Two forms of bidi-

rectional importance sampling (BIS) were presented: one using rejection and another

using resampling. While rejection leads to increased sampling expense, resampling

only allows samples to be drawn from an approximate distribution.
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1.7 Original contributions

The original contributions of this thesis are described chapterwise, below.

• Linear stratified sampling (Chapter 2):

We derive parameterizations whose Jacobian determinants are proportional to

a linear density. Then we use this to generate linear stratified samples over

triangular and tetrahedral domains, where the linear densities are specified by

vertex weights.

• Steerable importance sampling (Chapter 3):

We define a new technique that uses a steerable function as an importance

function.

Parameterized probability tree: We define a data structure, called the pa-

rameterized probability tree, where the traversal is probabilistic with branching

probabilities defined as a function of some parameter.

Efficient direct illumination: We construct a low variance estimator for di-

rect illumination from distant illumination by defining a piecewise linear, steer-

able importance function which is the product of incident illumination and the

local clamped cosine lobe. The reduction in variance is due to a combination

of the importance function and stratification that is achieved using the param-

eterized probability tree and linear stratification algorithm.

• Adaptive, bandwidth-based sampling(Chapter 4):

We use conservative estimates of local bandwidth for efficient simulation of

depth of field effects.

Fourier depth of field: We present a novel analysis of finite aperture camera

models in the Fourier domain.
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Adaptive image subsampling: Using the theoretical analysis of depth of

field we design a new frequency propagation scheme that allows conservative

prediction of bandwidth, locally over the image. We show that these bandwidth

estimates are used to obtain sampling densities that are close to optimal for

non-objectionable reconstruction of the images.

Adaptive aperture sample allocation: We use the bandwidth prediction

algorithm to estimate the variance of the integrand over the aperture, in depth

of field simulations. Since the error in Monte Carlo is proportional to the

variance of the integrand and inversely dependant on the number of samples,

we increase the number of samples where the variance is estimated to be high.

• Assessing Monte Carlo estimators (Chapter 5):

We use an adaptation of the statistical hypothesis testing framework to compare

first and second order statistics of estimators.

Comparing estimators: We design tests to compare means and variances of

estimators. These tests allow the assertion of hypotheses regarding bias and

efficiency of estimators, upto a chosen level of significance. We confirm the

dependability of the tests by comparing estimators with known qualities.

Verifying sample distributions: By adapting a goodness-of-fit test, we verify

the correctness of analytic sampling algorithms by comparing them against

samples generated using rejection.

Detecting errors in estimators: We introduce errors into common estima-

tors and demonstrate the ability to use the framework for error detection.
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Chapter 2

Stratified sampling

In certain sampling scenarios there is benefit in partitioning the sampling domain

and drawing samples from each partition rather than directly sampling the domain.

There are several reasons for this: (1) To obain samples that are less likely to be

“clumped”; (2) A heterogenous distribution over the domain may be split into ho-

mogenous partitions, which increases the precision in the estimates of characteristics

over the entire domain; (3) Sampling problems may differ markedly within the do-

main; (4) Higher precision might be required in certain parts of the domain than

others; (5) Partitioning the domain may simplify implementation. Of these, (4) and

(5) appear rarely in image synthesis.

Definition 2.1. Stratified sampling is the procedure of drawing independent samples

from partitions of the sampling domain. Each partition is referred to as a “stratum”,

and the process of partitioning the domain is called stratification. In stratified random

sampling, a simple random sample is drawn from each stratum.

Low discrepancy is a useful quality measure [92] for sample distributions, especially in

the context of Monte Carlo integration. A low discrepancy indicates that samples are

25



evenly distributed within the domain; thus, for any partitioning of the domain, the

different partitions are highly likely to contain the same numbers of samples. Suitably

partitioning the sampling domain may dramatically reduce discrepancy. This has

been one of the strongest reasons for the popularity of stratified sampling in image

synthesis.

Typically, in image synthesis, an estimator’s variance is used as a direct indicator

of sampling precision. Stratification reduces variance of estimates in situations when

certain parts of the domain are known to contain information that contribute more

to the final estimate. Consider the problem of Monte Carlo integration, over the

hemisphere defined by the local tangent plane, for estimating irradiance at a point.

Partitioning the hemispherical domain into regions of incident direct and indirect

illumination, followed by proportional allocation of samples, is an effective variance

reduction strategy. In addition, an appropriate importance sampling strategy may

be used for each partition, to fully exploit any known structure of the integrand.

An important consideration while performing stratified sampling is the stratification

strategy. Although the strata are typically decided during design, it is not uncommon

to choose the strata based on the distribution to be sampled (as seen in the example

of irradiance estimation). The theory of stratification describes how to partition

the sampling problem and then combine the individual estimates to obtain a higher

precision estimate over the whole domain.

In this chapter, we first discuss the theoretical aspects of stratified sampling in its

abstract form (Section 2.1). Then we describe image synthesis literature that discusses

stratified sampling (Section 2.2), making connections to the theory. Finally we present

a new stratification scheme for sampling linear densities for triangular and tetrahedral

domains (Section 2.3).
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Notation

Symbols with a h as subscript denote quantities associated with the stratum h.

L number of strata

D sampling domain

D =
»
D

dy volume of the sampling domain

Dh subdomain defined by partition h of D

Dh =
»
Dh

dy volume of the subdomain Dh

nh number of samples in stratum h

n=
Ļ

h�1

nh total number of samples

fhi ith sample in stratum h

Wh = Dh{D stratum weight

wh = nh{D sampling fraction in stratum h

Y h =
1

Dh

»
Dh

fpyq dy true mean for stratum h

σ2

h true variance for stratum h

yh =
1

nh

nḩ

i�1

fhi estimated mean for stratum h

For simplicity we use
³
D dy to represent the volume of the sampling domain, which is

strictly
³
D dµpyq where µpyq is a volume measure defined on the domain D.
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2.1 Theoretical aspects of stratified sampling

2.1.1 Proportional stratification

The mean over the entire domain, yst, is obtained by combining the means within

strata, correctly accounting for the strata weights. That is,

yst � 1

D

Ļ

h�1

Dh yh � Ļ

h�1

Wh yh. (2.1)

In general this is different from the mean estimated using the samples, which is

y � 1

n

Ļ

h�1

nh yh. (2.2)

These two estimates for the mean coincide when

nh

n
� Dh

D
or

nh

Dh

� n

D
or wh � w. (2.3)

The stratification procedure which guarantees this condition is called stratification

with proportional allocation. This type of stratification, with proportional allocation

of nh, yields a self-weighting sample which simplifies the estimation process since the

computation of Dh and D can be avoided.

In the case of finite, discrete sampling domains (e.g. statistical surveys within a finite

population), D and Dh may be available and the gain due to proportional allocation

is most significant when numerous estimates need to be made. When the sampling

domain under consideration is infinite (e.g. subsampling a pixel or sampling the sur-

face of a manifold), not having to compute D and Dh almost always simplifies the

estimation process.

28



2.1.2 Bias and Variance

Stratified sampling yields unbiased estimates when the correct strata weights are used.

Theorem 2.2. If the yh are unbiased estimates of the means within strata, then

ystis an unbiased estimate of the mean over the entire domain.

Proof.

E pystq � E

�
Ļ

h�1

Whyh

� � Ļ

h�1

WhY h (2.4)

since, for unbiased estimates within strata, E pyhq � Y h. The mean over the entire

domain, Y , is

Y � 1

n

Ļ

h�1

nḩ

i�i

fhi � 1

n

Ļ

h�1

nhY h � Ļ

h�1

WhY h (2.5)

Hence, E pystq = Y .

While stratification does not alter the expected value for the mean, the variance of the

estimate for the mean is different from that using simple random sampling. Further,

the variance due to stratification can be expressed in terms of the variance of the

estimates within strata.

Theorem 2.3. The variance of the mean estimate over the entire domain using

stratified sampling is related to the variance of the mean estimates within strata as

V pystq � Ļ

h�1

W 2

h V pyhq, (2.6)

if samples between strata are drawn independent of each other.
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Proof. We know that

yst � Ļ

h�1

Wh yh, (2.7)

where yst is a random variable which is a linear function of yh and fixed coefficients

Wh. Hence we can write

V pystq � Ļ

h�1

W 2

h V pyhq � 2
Ļ

h�1

Ļ

k¡h

WhWk Cov pyh ykq, (2.8)

using the standard statistical result that describes the variance of linear functions

of random variables. If samples between strata are drawn independently, then the

covariance terms vanish.

Corollary 2.3.1. If simple random samples are drawn within the strata,

V pystq � Ļ

h�1

W 2

h σ2

h

nh

. (2.9)

This result is obtained by substituting V pyhq � σ2

h{nh into the result from Theo-

rem 2.3.

Corollary 2.3.2. If simple random samples are drawn with proportional allocation

(Section 2.1.1), we obtain

V pystq � 1

n

Ļ

h�1

Wh σ2

h (2.10)

by substituting nh � nWh into Corollary 2.3.1.

For any non-trivial stratification scheme (at least two strata), Wh   1, � h. The

typical goals while designing the stratification scheme are: (1) To choose strata such
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that the variance within each of the strata, V pyhq, is low and (2) That the variance

is lower in strata with larger weights.

Theorem 2.3 suggests that Y can be estimated without error if D can be partitioned

into Dh such that the function is constant within each Dh since V pyhq will be zero

for all strata. Note that theorems 2.2 and 2.3 do not make any assumptions about

the sampling strategies used within the strata except that they be unbiased.

In the context of image synthesis, stratified sampling is more commonly used to

estimate integrals rather than averages.

Theorem 2.4. Let the estimate of the integral
»
D

fpyq dy be pYst � ystD. Then,

V
� pYst

	 � Ļ

h�1

D2

h σ2

h

nh

(2.11)

in the case of stratified random sampling.

Proof. The variance of the estimate of the integral isD2 times the variance of estimate

of the mean (Corollary 2.3.1), where D is the volume of the domain.

Since the relation between statistics of the estimators for mean and integral is straight-

forward, the results we present in the rest of this chapter for the mean estimator may

be simply extended to estimates of integrals.

2.1.3 Benefit from stratification

While stratified sampling can be used as a variance reduction technique in general,

there may exist stratification strategies that actually increase the variance of the

estimates. Although it is rare that stratification actually increases variance, this is
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theoretically possible. To achieve any gain from stratified sampling, the stratification,

allocation and sampling strategies need to be chosen carefully for the function or class

of functions that are being sampled.

In situations where the total budget is known, there exists a particular allocation of

samples that minimizes variance of the mean estimates. This allocation is commonly

called Neyman allocation after work by Neyman (in 1934) [75] which popularized it,

although the proof for this minimum allocation existed, as early as 1923, in work by

Tschuprow [109]. We will refer to this allocation strategy as optimal allocation. For

a given total of n samples, optimal allocation minimizes the variance of the mean

estimator by using

nh � n
Wh σh°
Wj σj

� n
Dh σh°
Dj σj

. (2.12)

Intuitively, optimal allocation is achieved when the number of samples in each stratum

is proportional to the volume of the stratum and the variation —more specifically

standard deviation— of the function within the stratum, or nh 9 Dh σh. The variance

in the estimate when when optimal allocation is used is

Vminpystq � p°Wh σhq2
n

. (2.13)

Although it possible that stratified sampling results in increased variance of estimates,

fortunately, using optimal or proportional allocation guarantees that the resulting

stratified sampling estimators will not be worse (considering variance) than the simple

random sampling. Using Vopt, Vprop and Vran to denote the variance in mean estimates

while using optimal allocation, proportional allocation and simple random sampling,

we now describe the relation between these three quantities.
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Theorem 2.5. Vopt ¤ Vprop ¤ Vran for finite strata volumes Dh.

Proof. Recall (from Equation (2.13) and Corollary 2.3.2) that

Vopt � 1

n

Ļ

h�1

pWh σhq2, Vprop � 1

n

Ļ

h�1

Wh σ2

h and Vran � σ2

n
.

By definition, Vopt ¤ Vprop. But the relationship between Vprop and Vran is to be

proven. The variance, σ2, of the sampling distribution, f , is given by

σ2 � 1

D

»
D

�
fpyq � Y

	
2

dy� 1

D

Ļ

h�1

»
Dh

�
fpyq � Y

	
2

dy� 1

D

Ļ

h�1

»
Dh

�
fpyq � Y h

	
2

dy � Ļ

h�1

Dh

�
Y h � Y

	
2� 1

D

Ļ

h�1

Dh σ
2

h � Ļ

h�1

Dh

�
Y h � Y

	2� Ļ

h�1

Wh σ
2

h � Ļ

h�1

Wh

�
Y h � Y

	
2

(2.14)

Vran can then be expressed in terms of the variances in the strata and the weighted

variances of the means of the strata from the true mean. That is,

Vran � 1

n

Ļ

h�1

Wh σ
2

h � 1

n

Ļ

h�1

Wh

�
Y h � Y

	2�Vprop � 1

n

Ļ

h�1

Wh

�
Y h � Y

	
2

(2.15)

Clearly, from Equation (2.15), Vran ¥ Vprop. The equality occurs when the means

within the strata are all identical to the mean over the entire domain.

To clearly see where the benefit of stratified sampling with optimal allocation comes
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from, let us first consider the difference between optimal and proportional allocation.

Vprop � Vopt � 1

n

Ļ

h�1

Wh σ2

h � 1

n

Ļ

h�1

pWh σhq2� 1

n

Ļ

h�1

Wh p σh � pσq2, (2.16)

where pσ is the weighted mean of the standard deviations within the strata. Substi-

tuting this result into Equation (2.15), we obtain the relation between variances due

to simple random sampling and stratified random sampling with optimal allocation,

Vopt � Vran � 1

n

Ļ

h�1

Wh pσh � pσq2 � 1

n

Ļ

h�1

Wh

�
Y h � Y

	2

Strata Deviations Strata Means

(2.17)

From Equation (2.17), we see that the reduction in variance with optimal allocation

stratified sampling over simple random sampling is from two sources: the first is due

to the elimination of differences between the strata means; the second is due to the

elimination of differences between the standard deviations between the strata. The

latter causes the reduction in variance between proportional allocation and optimal

allocation. Note that if larger strata exhibit greater deviations in their mean from

the average, the reduction in variance becomes more pronounced.

2.2 Stratified sampling in image synthesis

Stratified sampling theory has existed for almost a century and was mainly used by

statisticians for increasing precision in analysing surveys. The application of stratified

sampling was originally limited to finite, discrete populations within which samples

were drawn to estimate certain charecteristics of the population. Several results

on efficient allocation for stratified sampling were proposed, of which the results on
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optimal allocation [75, 109, 16] gained popularity within the statistics community

in the early forties. About three decades later, Bayes studied the benefit due to

stratified sampling and its relation to Markov chain sampling [15]. More recently,

Valliant analysed properties of different estimators [110] using stratified sampling and

proposed extensions to stratified sampling like stratified two-stage sampling [111, 110].

Recent work [51] in stratified sampling derived an algorithm which varied the alloca-

tion at each sampling step based on information derived using samples drawn in the

previous step. The algorithm was shown to converge at the rate of convergence of

optimal allocation.

Stratified sampling has been applied to solve a wide variety of problems in different

fields. e.g. applied mathematics [56], software testing [80], biological sciences [54],

optimization [89], Monte Carlo quadrature [44], etc.

1986

Cook argued that visual artifacts in image synthesis were not a result of point sam-

pling [28], rather, that they were results of the sampling being regular. In earlier

work, Yellott’s observation [120] that retinal cells were distributed with a Poisson

disk distribution led him to believe that these sampling patterns could be useful in

eliminating aliasing artifacts. It is well known that, with uniform point sampling,

frequencies in the function being sampled that are higher than the half the frequency

of the distribution of point samples would be aliased. Cook presented a study of

uniform sampling and jittered uniform point sampling (a form of stratified sampling)

and demonstrated that the latter is a good approximation of the Poisson disk sam-

pling. He studied the problem of aliasing in the frequency domain and concluded

that the advantage of using Poisson disk sampling was that the aliasing artifacts were

transformed into noise that was less visually disturbing. Cook also describes a variant
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to stratified sampling, where the sampling within each stratum is not simple random.

Instead, he suggests using a gaussian distribution within each stratum and demon-

strates that this reduces aliasing further. Cook applied jittered uniform sampling to

distributed ray tracing and demonstrated a reduction in variance.

1987

Mitchell pursued the problem of eliminating aliasing artifacts due to sampling, but

particularly in the context of image space sampling [70]. By revisiting Yellott’s work

on retinal photoreceptor distributions [120] and work in the field of image halfton-

ing (that had been around for a couple of decades already), Mitchell stressed on

the importance of blue noise properties in sampling distributions. He showed that

although Cook’s method of jittered uniform sampling reduced aliasing artifacts, it

still produced sampling patterns with too much energy in the lower and intermediate

frequency bands. To ameliorate this effect, Mitchell recommended strategies at two

levels. First, he adapted algorithms from image halftoning literaure to perform true

Poisson disk sampling, instead of using jittered sampling as an approximation. Sec-

ond, he presented an adaptive sampling algorithm that would sample regions with

higher frequencies in image space more profusely. He used local image contrast as the

metric for adaptive subdivision, rather than local variance— which he claimed to be

a poor measure of visual perception of local variation.

1990

Shirley adapted Arvo’s technique of backward ray tracing [5] to decrease variance in

estimating radiance due to illumination reflected of multiple specular as well as diffuse

surfaces. Arvo had introduced the term backward ray tracing to refer to the process

of tracing light paths from the light sources into the scene, where their contributions
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would be recorded for lookup during shading while tracing from the eye. Shirley

embellished Arvo’s technique by using different algorithms to estimate hard and soft

illumination. While Arvo’s technique was effective in accounting for light paths that

bounced of multiple specular objects before they impinged on diffuse surfaces, Shirley

used radiosity to account for soft lighting due to diffuse-diffuse interactions.

Shirley’s algorithm employed stratified sampling at two distinctly independent levels:

first, stratification of the local hemisphere of directions—that is, strata corresponding

to rays arriving from specular surfaces and those from diffuse surfaces; second, further

stratification of the those strata corresponding to rays from specular surfaces, by

extending Cook’s jittered sampling algorithm. In his paper, Shirley only identifies

the latter as a form of stratification.

1991

Earlier work on stochastic sampling by [28] and the introduction of the rendering

equation by Kajiya in 1986 [52] sparked off a flurry of research in sampling techniques

for distributed ray tracing and Monte Carlo integration respectively. The year of 1991

saw three important papers related to sampling.

Observing the importance of evaluating and assessing different sampling techniques,

Shirley proposed that discrepancy of point sets could be used as a quality measure

for point samples [92]. In the context of sampling for Monte Carlo integration, the

variance of estimators may be used as a direct indicator of precision, and hence can

be considered a quality measure for the estimator. However, the quality of an estima-

tor could depend on other factors than simply the sampling algorithm. In addition,

image space sampling was gaining importance for reducing aliasing artifacts. Shirley

demonstrated that the discrepancy of point samples was a quality measure consis-

tent with results of analysing variance or aliasing artifacts. In his paper, Shirley
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discussed simple random sampling, jittered sampling, half-jittered sampling, Poisson

disk sampling and N-rooks sampling and ranked each of these sampling methods in

specific contexts, according to the discrepancy of the resulting samples. In addition,

he presented a scheme to generate non-uniform stratified samples, by generating uni-

form samples and then warping them with a transformation. This idea was extended

later by Arvo to sample 2-manifolds. Finally, Shirley proposed a method to estimate

discrepancy for stratified samples from non-uniform distributions.

Mitchell analysed the problem of reconstructed images from samples [71] in the fre-

quency domain for extensions of jittered sampling to higher dimensions. In accordance

with his earlier thesis, that sampling patterns containing higher frequencies tended to

reduce perceptible artifacts, he proposed a scanning sampling algorithm to optimally

sample higher dimensions for application in distributed ray tracing.

While there were a number of papers analysing sampling techniques for their efficiency,

there was little work on testing whether sampling algorithms were introducing errors

in estimates. Kirk and Arvo observed that the adaptive sampling algorithms that

were being used were biased [59]. In addition they proposed an adaptive sampling

scheme that yielded unbiased estimates.

1995

Although stratified sampling had become popular in image synthesis, it was mainly

used in the form of jittered sampling where a regular grid of samples were perturbed

to yield a uniform stratification of rectangular domains. Similar to Shirley’s warp for

stratified sampling of non-uniform distributions, Arvo proposed an area preserving

mapping [7] from the unit square to the spherical triangle that allowed stratified

sampling of spherical triangles. Using this method, the solid angle subtended by

arbitrary polygons could be sampled with stratification.
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1996

Stratification theory predicts that the convergence of mean estimates improves from

OpN�1q to OpN�2q when simple random sampling is replaced with stratified random

sampling in 2D. Mitchell studied the benefit of stratification [72] in practice, particu-

larly in the context of pixel supersampling. He concluded that, in practice, stratified

random sampling of images resulted in convergence rates anywhere from OpN�1q to

OpN�2q, with a rate of OpN�3{2q for pixels containing edges. His experimental results

were accordant with earlier theoretical bounds derived based on discrepancy by Beck

and Chen.

An important result that Mitchell deduced was that, in general, the convergence of

mean estimates with stratified random sampling in d dimensions is OpN�1�2{dq. This

result triggered the realization within the image synthesis community that stratified

random sampling would not be very effective as a variance reduction tool, for higher

dimensions. The scope of other forms of stratified sampling, than just stratified

random sampling have not been explored much in image synthesis literature.

1997

In contrast to the theoretical and experimental approaches taken by Arvo, Shirley,

Cook and Mitchell, McCool and Harwood presented a completely algorithmic sam-

pling strategy using probability trees [67]. The main strategy in this method was

to subdivide the sampling domain and arrange the domains into a hierarchy where

the subdivisions were leaves. For generating samples according to given distributions,

their algorithm could be adapted in two ways: the classical approach of inverting the

cumulative distribution for each dimension independently, which was less practical

and a hierarchical algorithm where they ensured that the distribution function at
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each internal node of the hierarchy represented the integral of the function over its

child nodes. Although they provided means to adaptively generate stratified sam-

ples, the lack of theoretical justification in their paper makes it unclear what their

allocation scheme is, or even whether or not the method introduces bias in mean

estimates.

1999

By this time stratified sampling had been shown to be useful in image synthesis for a

number of point sampling problems: reducing perceptible aliasing artifacts while sam-

pling images; reducing variance in depth of field, motion blur and other distributed

raytracing contexts; and for sampling the hemisphere while integrating to compute

incident illumination. Evans and McCool used stratification in conjunction with im-

portance sampling [39], to reduce variance while integrating over wavelengths along

paths. They argued that using a single spectral sample associated with each path

led to both— a drastic increase in variance of the combined spectral estimates and

objectional levels of spectral incoherence between neighboring pixels. To remediate

these problems, they used the spectral power distribution of light sources to impor-

tance sample wavelengths. As a further variance reduction tool, the samples drawn

were stratified. They generated images demonstrating effects like spectral caustics

and chromatic aberrations.

2001

Arvo’s method to generate stratified samples on spherical triangles was useful in

sampling solid angles projected by arbitrary polygons while estimating incident il-

lumination. In 2001, Arvo provided a more general recipe [9] to generate stratified

samples on a 2-manifold. Any homeomorphic mapping from the unit square to a
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2-manifold could be used to map samples in the unit square to samples on the man-

ifold. However, to ensure that there these samples do not introduce a bias, when

used in a Monte Carlo integration, the Jacobian of the mapping would need to be

introduced in the integrand. This follows from a simple change of variables due to the

parametrization. Arvo observed that, for those parametrizations that the Jacobian

is a constant, the original samples could be used directly for computing unbiased

Monte Carlo estimates. Based on this observation, he outlined a scheme to derive a

constant Jacobian mapping from the unit square to any 2-manifold, and suggested

that this be used to map stratified samples on the unit square to stratified samples

on the 2-manifold. The samples thus generated, would be uniformly distributed over

the surface of the 2-manifold.

2002

Kollig and Keller presented a stratification scheme [61] which they used in combina-

tion with a randomized quasi Monte Carlo algorithm for integrating square integrable

functions. Randomized quasi Monte Carlo algorithms are quasi Monte Carlo algo-

rithms where the samples are uniformly distributed in the domain.

2004

Wang and Hwang adapted Arvo’s recipe for stratified sampling of 2-manifolds to

sample ellipses [115]. They used their algorithm to compute form factors and demon-

strated that the samples were uniformly distributed. While Arvo’s scheme was useful

for sampling 2-manifolds, the stratification produced would not be effective as an

approximation to the Poisson disk distribution of 3D models represented as polygon

meshes. This is fundamentally because satisfying area preserving maps within each

polygon of the mesh, becomes progressively less meaningful as the mesh is refined. It
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would also be necessary that the triangles be sampled with probabilities proportional

to their areas. Nehab and Shilane presented an algorithm for stratified sampling of

3D models [73] and demonstrated that the samples produced were visually appeal-

ing. They achieved this by first voxelizing the model based on certain criteria and

then drawing samples from the voxels, which also guaranteed a controllable minimum

distance between points. Although this method produced good looking samples, it is

not clear that the samples could be used in Monte Carlo estimation.

2005

One method of suppressing aliasing artifacts in images is to reduce the bandwidth

of the image according to the minimum distance between samples. One common

choice for the filter to perform this bandlimiting is a recursively applied box filter. A

recursively applied box filter is equivalent to a B-spline filter. An alternative to actual

convolution by the filter kernel in image space is to draw samples according to the

distribution defined by the filter. Stark and Shirley derived an algorithm to generate

stratified samples for cubic B-spline pixel filtering [101]. They derive the algorithm

for sampling the cubic B-spline kernel in 1D and use the property that B-spline filters

are separable to sample in 2D.

2006

By 2006, environment maps had gained immense popularity in image synthesis due to

the richness in illumination that they provided. Several algorithms had been proposed

for sampling environment maps, several of which were efficient but biased. Xing et al.

proposed an extension [68] to Debevec’s biased light probe sampling technique [32].

Debevec proposed the use of a median cut algorithm to partition the environment map

into regions of equal integrated energy and represented each partition with a single
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point light located at its centroid. In their extension, Xing et al., used stratified

importance sampling within each partition.

2.3 Analytical parametrizations for stratification

When the sampling domain is not a rectangle, stratified sampling in the form of

jittered sampling cannot be applied directly on the domain, and the stratification al-

gorithm demands more attention. Consider the example of sampling the hemisphere

of directions for integrating incident radiance at a point. The hemisphere is typi-

cally stratified into regions that are projections of light sources onto the hemisphere

(and the complement of the union of those regions). This stratification is an effec-

tive variance reduction technique since between strata, the mean light energy could

potentially be drastically different, while within each stratum the variation is usually

much less dramatic. However, the process of discovering the strata as projections

of the light sources is not simple in general since the illuminaires could be of arbi-

trary shapes. One method would be to project each polygon of the light source onto

the hemisphere and further stratify the projection using Arvo’s algorithm to sample

spherical triangles [7].

Another approach to stratify arbitrary domains was suggested by Shirley [92] and then

developed for 2-manifolds by Arvo [9]. Arvo’s method involved the construction of a

constant Jacobian parametrization from the unit square to the manifold that was to be

stratified. As a consequence, the change of variables from the differential area element

on the square to that on the 2-manifold, was trivialized. Thus the ratios of strata

on the unit square to the regions they map to on the manifold would be constant.

While this technique allows stratified random sampling with proportional allocation

on arbitrary 2-manifolds, it is (in the form proposed) limited to constant distributions.
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However, Arvo suggests ways to extend this for non-uniform distributions, and points

out that the true hurdle lies in the step involving inversion. In this section, we present

a slight modification of Arvo’s algorithm for 2-manifolds, that allows sampling from

a non-uniform density (Section 2.3.1). Specifically, we derive the parametrizations

for sampling linear densities with triangular (Section 2.3.2) and tetrahedral support

(Section ??).

2.3.1 Non-uniform stratification of 2-manifolds

With a minor modification to Arvo’s algorithm [9], we describe an analytic method

for non-uniform stratification of 2-manifolds in R
n. We retain the notation introduced

by Arvo and invent similar notation for new quantities.

Let M represent the 2-manifold that we wish to sample and wppq, p P M be the

density according to which we need to sample M. We seek to derive a mapping

ψ : r0, 1s � r0, 1s Ñ M the Jacobian of which is proportional, locally, to the w. In

Arvo’s algorithm, the goal is to derive ψ with a constant Jacobian. We derive ψ

starting from an aribtrary smooth bijection, on all but a set of zero measure, from

the unit square to the 2-manifold, φ : r0, 1s � r0, 1s ÑM.

We define the weighted surface area 2-form, σw : r0, 1s � r0, 1s Ñ R such that the

integral of this function over the parameter space yeilds the weighted integral over

the manifold using the weighting function. Specifically,»
P

σwpxq dµ1pxq � »
φpPq wpyq dµ2pyq (2.21)

where P is a region in the unit square and µ1, µ2 are measures of area in the parametric

space and manifold surface respectively. The rhs of Equation (2.21) is simply the
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Algorithm 2.1 Algorithm for stratification of 2-manifolds given a target density

1. Select a smooth bijection φ : r0, 1s � r0, 1s Ñ M, from the unit square to the
2-manifold M � Rn. Let wpyq be the density we wish to sample according to,
where y is a point on M.

2. Define σw : r0, 1s � r0, 1s Ñ R as

σwpxq � wpφpxqqb〈φx1, φx1〉 〈φx2, φx2〉� 〈φx1, φx2〉
2 (2.18)

where φx1 � �Bφ1Bx1
, Bφ2Bx1

, Bφ3Bx1
, ..., BφnBx1

	
and x � px1, x2q.

3. Define cumulative distributions

F px1q � 1³
0

x1³
0

σwpu, vq du dv
1³
0

1³
0

σwpu, vq du dv
Gx1px2q � x2³

0

σwpx1, vq dv
1³
0

σwpx1, vq dv (2.19)

4. Invert the two cumulative distributions

fpzq � F�1pzq
gpz1, z2q � G�1

fpz1qpx2q (2.20)

5. Define the resulting stratification parametrization, ψ : r0, 1s � r0, 1s ÑM, as

ψpzq � φpfpz1q, gpz1, z2qq
where z � pz1, z2q. ψp.q has the property that equal areas on the unit square
map onto regions on the manifold with equal integrals of the density function
wp.q.
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integral of the sampling density over the region on the manifold that P maps onto.

In the case of a constant sampling density, this would simply be areapφrPsq, as used

by Arvo.

For 2-manifolds imbedded in 2D and 3D spaces, we find simple expressions for σwpxq.
In 2D, this is given by the determinant of the Jacobian of the initial parametrization

φ, weighted by the local density,

σwpxq � wpφpxqq detpJxpφqq. (2.22)

In 3D, this is expressed in terms of the partial derivatives of the parametrization

along the two axes, φx1 and φx2, in parametric space and the sampling density:

σwpxq � wpφpxqq }φx1pxq � φx2pxq}. (2.23)

This step of the algorithm differs from Arvo’s in that the resulting surface area 2-form

contains an additional term corresponding to the target sampling distribution.

The rest of the procedure is exactly as described by Arvo: We derive cumulative

distributions and invert them to finally derive ψ. However, since σw is potentially

more complicated than just σ, the process of integrating to define the cumulative

distributions and inversion to derive ψ, are slightly more complex. Their actual

complexity depends on φp.q and M. The complete algorithm, retaining as much

similarity to Arvo’s algorithm as possible, is shown in Algorithm 2.1.

While the extension of Arvo’s algorithm to non-uniform distributions is straightfor-

ward, the inclusion of the weighting function increases the complexity of steps 3, 4

and 5 in Algorithm 2.1. In the following sections, we derive the mapping for linear

stratification of triangles and tetrahedra respectively.

46



2.3.2 Linear stratification of triangles

In this section we present a simple and compact algorithm that allows generation of

stratified samples [102]according to a linearly-varying density function over a triangle

with vertices A,B,C and vertex weights wa, wb and wc. A,B,C denote the position

vectors of the vertices. We follow the steps highlighted in Algorithm 2.1, fixing M

to refer to a triangle, and obtain a parametrization for stratification of triangles

according to a linear density.

1. We start with a simple barycentric mapping defining position and density:

φpx1, x2q � p1� x1qA � x1p1� x2qB � x1x2 C;

wpx1, x2q � p1� x1qwa � x1p1� x2qwb � x1x2 wc. (2.24)

2. After simplification of the expression for σw, we obtain

σwpx1, x2q � 2 a x1wpx1, x2q (2.25)

where a is the area of the triangle.

3. For F p.q and Gp.q, we obtain

F px1q � α x3

1
� β x2

1

Gx1px2q � γx1 x
2

2
� ρx1 x2 (2.26)
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where

α �wb � wc � 2wa

wa � wb � wc

,

β � 3wa

wa � wb � wc

,

γs � spwc � wbq
spwc � wbq � 2p1� sqwa � swb

,

ρs � 2p1� sqwa � swb

spwc � wbq � 2p1� sqwa � swb

.

4. Since F p.q and Gp.q are cubic and quadratic, fp.q and gp., .q are easily obtained

by analytically or numerically inverting them.

5. Pseudocode for realizing linear stratification of triangles is shown in Algo-

rithm 2.2

Algorithm 2.2 Linear stratification of triangles

function SampleTriangle (ξ1, ξ2, A, B, C, wa, wb, wc)

s� fp ξ1, wa, wb, wcq
t� gp ξ2, s, wa, wb, wcq
w � p1� sqwa � sp1� tqwb � stwc

p � p1� sqA� sp1� tqB� stC
return pw,pq

function f ( ξ, wa, wb, wc )

X � pwb � waq{3� pwc � wbq{6
Y � wa{2
α� X{pX � Y q
β � Y {pX � Y q
return RootOfpαx3 � βx2 � ξq

function g ( ξ, s, wa, wb, wc )

t� spwc � wbq � 2p1� sqwa � swb

γ � spwc � wbq{t
ρ� 2pp1� sqwa � swbq{t
return 2ξ{pρ�b

ρ2 � 4γ ξq
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Figure 2.1: Triangle ABC (left) was sampled using the linear stratified sampling algo-
rithm (see Algorithm 2.2). Samples along AA’ (magenta), BB’ (red) and CC’ (blue)
were collected in 20 bins (for each line) and estimates of the density in each bin
are plotted. Also shown are the analytically computed expected densities (black lines)
along each line.
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Chapter 3

Steerable Importance Sampling

Despite copious amounts of literature exploring importance sampling of static func-

tions in Monte Carlo image synthesis, there has been little work on importance sam-

pling dynamically varying functions. One reason for this is a requisite step of the

importance sampling procedure: Computing the correct probability density associ-

ated with each sample is crucial. This step involves normalization, or integrating

the importance function over the entire domain. For dynamically varying functions,

repeated estimation (or computation) of this integral can make the sample-drawing

process deterrently expensive. In this chapter, we present a technique [103] that

defines a steerable importance function as the product of a static component and a

steering function. We present an abstract description of the method before describing

an example application. However, we first review the notion of steerable functions

before describing the steerable importance sampling method.
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3.1 Steerable functions

Functions whose transformed versions can be expressed as a linear combination of a

fixed set of bases are called steerable functions. The coefficients of the linear combi-

nation are dependent on the parameters of the transformation and are called steering

functions.

Consider the example of a shifted sinusoid sin px� kq which can be represented as

the linear combination of a fixed sinusoid and cosinusoid,

sinpx� kq � cos k sin x � sin k cosx. (3.1)

The translation of the sinusoid by the parameter, k, can be expressed as a linear com-

bination of the bases sin x and cosx. Thus a sinusoid is steerable under translation,

where the steering functions are the coefficients in the linear combination (cos k and

sin k).

As another example, consider the 2D function fpx, yq and the problem of finding its

partial derivative along a direction given by θ degrees from the reference X direction.

If the partial derivatives along the reference X and Y directions, f 1Xpx, yq and f 1Y px, yq
respectively, have already been computed then explicit computation of the partial

derivative, f 1θpx, yq, may be avoided. Instead, we may use the relation

f 1θpx, yq � cos θf 1Xpx, yq � sin θf 1Y px, yq (3.2)

In this case the partial derivatives along the two linearly independent, arbitrary ref-

erence directions are the fixed bases and the sinusoid and cosinusoid of the rota-

tion angle θ are steering functions. This is another example of a single parameter
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transformation; however, the notion may be extended to transformations of multiple

parameters.

Definition 3.1. A function fpxq : Rn Ñ C is steerable under a k-parameter trans-

formation Kτ if the transformed version of f can be written as a linear combination

of a fixed, finite set of basis functions tφipxqu:pKτfqpxq � m̧

i�1

ψipτq φipxq � 〈Ψpτq, Φpxq〉 . (3.3)

Here ψi are called the steering functions of f associated with the basis tφiu and depend

solely on τ , the k-parameter vector that characterizes the transformation.

The set of basis functions required to steer a function is not unique. For example,

any linear transformation of the bases can be used so long as the transformation is

non-singular.

Theorem 3.2. If a function f is steerable with a set of bases Φ, then each of the

bases, φi, is itself steerable with the same set of bases.

Proof. Under a transformation Kτ , by definition pKτfqpxq � ΨT pτqΦpxq. The set

of basis can be written in terms of a number of linearly independent transformed

versions of f , with different parameters τ1, τ2, τ3, ..., τn. That is,

Φ � ������������
ΨT pτ1q
ΨT pτ2q
...

ΨT pτnq
������������
�1
������������

Kτ1f

Kτ2f

...

Kτnf

������������ (3.4)

Since each Kτif is steerable with bases Φ, the theorem holds.
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3.1.1 Brief history

The name “steerable” was introduced by Freeman and Adelson [42] for filter kernels

whose rotated versions could be expressed in terms of a set of bases; they provided

an analytic method to derive the basis kernels. Their work was extended [96, 97] to

include Euclidean transformations (translations and scaling) by Simoncelli et al., who

called the property “joint-shiftability”. This extension also provided an interesting

link between wavelet theory and steerability. Another term for steerable functions

that was introduced by Perona [78] is “deformable functions”. Perona used singular

value decomposition to guarantee optimal bases for two parameter kernel families.

In its various flavours, steerability has been used (sometimes without being acknowl-

edged) predominantly in computer vision for image analysis, motion estimation and

pattern recognition. In computer graphics, steerability has found applications in

texture antialiasing, illumination textures, and texture synthesis.

A common method of feature detection in images involves the use of linear filters.

Typically, a template of the feature to be detected is constructed and correlated with

the input image. Regions in the output with high values for correlation indicate the

presence of the feature. To be able to detect multiply oriented versions of the same

feature, one option would be to construct rotated version of the templates and test for

correlation against each. However, since correlation is a linear operation, Freeman and

Adelson recognized that the result of the correlation against the differently oriented

templates could be expressed as the linear combination of the results from a small

number of basis templates [42]. Thus, the notion of steerable filters was introduced

for detecting local image features with different orientations. The set of features was

later extended along with the ability to detect features at different scales [96]. Two

dimensional steerable filters used for feature detection in images were extended to 3D

and used in motion estimation. Since image motion can be viewed as orientation in a
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3D spatio-temporal domain [1, 118], the extension of 2D image analysis was natural.

3.1.2 Steerable functions in computer graphics

The earliest, explicit application of steerability in computer graphics was in the purely

2D problem of texture filtering for antialiasing, by Gotsman [47]. In this paper, Gots-

man described how the convolution of a filter with an image could be approximated

in constant time for space-variant filters of arbitrary sizes. He reduced the problem

of filtering in constant time to reasonably approximating a parametric family of filter

kernels with a constant number of basis kernels. Although the proposed technique in-

volved precomputation of the convolution by a family of gaussian kernels, the savings

were shown to be significant when kernels with large supports were used.

Nimeroff et al. [76] proposed an efficient algorithm for dynamic relighting in naturally

lit scenes by capitalizing on the linearity of rendering: the image resulting from two

illuminaires is simply the sum of two images rendered considering the illuminaires

independently; scaling the strength of an illuminaire causes the image to be scaled by

the same factor. Rather than recomputing the entire global illumination solution for

each given illumination setting in an animation, they proposed a technique that ap-

proximated each illuminaire by a set of steerable illuminant bases and used the bases

to relight the scene for other illumination settings. By using the theory of steerable

functions, they derived the bases for several natural lighting settings (overcast sky-

light, clear skylight, steerable sunlight and general skylight). During rerendering the

coefficients with which the bases were weighted was constructed depending on user

input like cloudiness, sun position, etc. The method was later extended to efficiently

rerender indoor scenes [35], theatrical lighting design, directional spot lights, area

light sources and combinations [107].
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Ashikhmin and Shirley revisited the use of steerable illuminant bases [13], and pro-

posed bases for lighting bumpy surfaces (height fields) . Their method involved the

precomputation of a set of illumination textures that captured (global) illumination

effects on a bumpy surface due to distant, distributed light sources. Given a new light

direction, they generated an image using a linear combination of the precomputed set

of illumination textures; this generated image captured illumination effects for the

bumpy surface, including shadowing and interreflection. The approach taken, in this

method, was to first numerically compute the bases and then fit analytical functions

to it. That is, they first chose a light source with certain properties and tried to find

steerable functions that approximated it well.

3.1.3 Designing steerable bases

As shown earlier (Section 3.1), sinusoids (hence cosinusoids) are steerable. As a conse-

quence, any bandlimited function with a discrete Fourier power spectrum is steerable

given enough basis functions. The strategies to design basis functions for steerable

functions can be broadly categorized into three categories: analytic, numerical and

mixed. The strategy adopted by Freeman and Adelson [42] was to choose a set of

basis functions and then find functions with the desired properties, within the linear

space spanned by the set of basis functions. A different approach was to compute,

numerically, the basis and steering functions required to steer a given function un-

der a family of transformations [78]. Numerical approaches were general although

the functions were only available in sampled form rather than as convenient analytic

expressions.

Since steerability of a function f implies steerability of its bases φi, the concept

of steerability can be naturally expressed in terms of a function space (the space
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spanned by tφiu). Teo exploited this property, and defined a more sophisticated an-

alytical approach where he defined steerability using the mathematical theory of Lie

transformation groups. Although this provided a powerful way to obtain almost opti-

mal set of basis functions, the process was quite complicated and its application was

mostly restricted to one-parameter Lie groups and multi-parameter Abelian groups.

Neither of these application groups included the group of 3D rotations which is one

of the most commonly encountered group of transformations in computer graphics.

The third category of steerable basis design combined the benefits of the analytical

and numerical approaches. Teo and Hel-Or chose to use the analytical approach

to obtain a large set of basis functions which they then reduced using numerical

techniques. Ashikhmin and Shirley extended this idea by first using the numerical

approach to arrive at a set of basis functions and then fitting analytic approximations

to the sampled functions.

3.2 The parametrized probability tree

Consider a family of parametrized density functions, ρ : D � S Ñ R, over a spatial

domain D � D1 Y D2 Y ... Y Dn and parameter domain S; assume that Di X Dj �tu � i � j. The density within a differential spatial neighborhood about a point

x0 P D is ρpx0, sq where s P S. Also consider the scenario where ρ is to be used as an

importance function.

Two important requirements for ρ to be useful as an importance function are: (1)

the ability to generate random variables distributed according to this density and (2)

the knowledge of the exact normalized probability density associated with drawing

each sample. The normalized density would simply be the value of ρ at each sample
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if
³
D ρpx, sq dµpxq � 1 for all values of the parameter s; here µpxq is a volume mea-

sure associated with the domain D. If the density does not integrate to unity, the

normalization would involve a division by value of this integral.

The goal of this section is to describe a data structure for efficient generation of

random variables in D according to ρ. This is possible provided two conditions are

met.

The first condition is that there exist ways of generating the random variables in each

of the subdomains Di according to ρ. In other words, the data structure will be used

to randomly select a subdomain Di with a probability proportional to the integral of

ρ within it. Let Fipsq be the integral of ρ over subdomain Di. The probability that

a random varaible y P D, drawn from the distribution ρp., sq, lies in Di is given by

Fipsq
ņ

j�1

Fjpsq � »
Di

ρpx, sq dµpxq
Fpsq (3.5)

(3.6)

where Fpsq is the integral of the density function over all domains, for a given value

of the parameter:

Fpsq � ņ

j�1

»
Dj

ρpx, sq dµpxq. (3.7)

The second condition is that these integrals are relatively easy to compute and can

be compactly represented. The first condition reduces the problem of generating the

random variable y according to ρp., sq to one of randomly selecting a subdomain Di

(based on the probability in Equation (3.5)), for a given value of the parameter s.
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Figure 3.1: Each node of the tree stores a functional expressing the integral of a
density function over that part of the domain which is spanned by the node: Each leaf
node k spans a partition Dk; each internal node spans a subdomain that is a union of
all the partitions spanned by the leaves in its subtree.

The data structure presented here is similar in spirit to the hierarchical probability

tree introduced by McCool and Harwood [67]. They used k-D trees to store piecewise

constant approximations of their probability density function, and generated stratified

samples by traversing down the tree based on branching probabilities proportional to

the integral of the density function in each branch. However, their application was for

a fixed importance function rather than a parametrized importance function family.

Another disadvantage of their scheme was their dependence on explicitly integrating

the function within each node of their hierarchical structure. The method to perform

these integrations in constant time, using the data structure described in this section

for a parametrized family of importance functions, is described later in this chapter

(see Section 3.4).

3.2.1 The data structure

The data structure consists of a k-ary tree whose nodes store functions (how the

functions are represented is an implementation issue). The n leaves of the tree store
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Figure 3.2: Given the input parameter value, s0, and a random variable ξ P r0, 1s,
the tree can be used to select one out of n subdomains with Oplognq branching steps.
The domain corresponding to the leaf with the largest value of the integral of the
density function, is most likely to be chosen. The problem of subdomain selection is
transformed into a simple 1D range query of Y � ξF ps0q within r0, F ps0qs amongst
the intervals.

the probabilities, Fipsq, of each subdomain Di. Each internal node stores a function

that is the sum of all the functions of its children. If the functions are represented

by storing coefficients resulting from their projection onto some standard set of basis

functions, internal nodes are computed by simply adding coefficients (see Figure 3.1).

Thus the root of the tree stores the integral of the density over the entire domain,

and it is this value that will be used for normalization of the density associated with

each sample.

3.2.2 Tree traversal

The parameterized probability tree is used for performing range queries on a uniformly

distributed random variable, against the various partitions of the domain. The inputs

to the traversal routine are: (1) a parameter value s0 and (2) a uniformly distributed

random variable, ξ P r0, 1s. While fixing s0 defines the density function over the

spatial domain, ξ defines a tree traversal path from the root to a leaf. The leaf at
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which the traversal ends is the selected subdomain. Thus, starting with a uniformly

distributed random variable, the data structure can be used to select a subdomain

with a probability proportional to the integral of the density function within this

subdomain.

The first step in the traversal algorithm is to construct a new random variable Y �
ξFpsq. The problem of selecting a subdomain is equivalent to concatenating the

different Fipsq in any arbitrary order, keeping track of the cumulative distribution,

and finding that interval into which Y fits (see Figure 3.2). Since each node of the

tree stores a function of the parameter, simply plugging s0 into each internal node

yields a value that corresponds to the combined volume of all the leaves it its subtree.

At each point in the traversal, a simple comparison is made of Y against the volume

of each of the child nodes. The child node corresponding to the interval into which

Y falls is visited next. Thus in Oplognq asymptotic time, a path is obtained from

the root to the subdomain corresponding to the interval into which Y falls. This leaf

node has been chosen with a probability proportional to the integral of the density

function within it.

Finally, once the subdomain has been selected and a random sample location has

been drawn within this subdomain (the assumption is that there is a way to do so),

the normalized density associated with choosing that sample location is simply the

density evaluated at that location divided by Fps0q.
3.3 Steerable importance sampling

This section describes an extension to importance sampling that allows the use of

a dynamically varying importance function which is steerable (or can be reasonably
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approximated by a steerable function). The abstract notion of steerable importance

sampling is first provided (Section 3.3.1), followed by an example of its applicability

in estimating direct illumination from distant light sources (Section 3.4).

3.3.1 Motivation

Consider the Monte Carlo integration of functions that can be expressed as a product

of two functions, where the latter is steerable. That is,

Ipsq � »
D

hpx, sq dx� »
D

fpxq gpx, sq dx, (3.8)

where D is any domain of integration and gpx, sq is a steerable function, or can be

reasonably approximated by a steerable function. Importance sampling is a com-

monly used strategy for efficiently estimating such integrals. While the choice of the

importance function alone cannot introduce a bias in the estimates, the variance of

the estimates depends on this choice.

It is well known that the more closely an importance function resembles the integrand,

the more effective the importance sampling will be. If Ipsq is to be estimated for

several values of s, choosing gpx, sq as an importance function could be a reasonable

choice. Although it is easy to construct specific situations where fpxq would be

a better importance function, choosing gpx, sq to be the importance function and

factorizing hpx, sq in a way that fpxq is not a rapidly varying function can be expected

to reduce the variance of the estimates. Although the factorization of the integrand

is just as important for reducing the variance in the estimates, it is a problem that

depends on the actual function, and thus is closely tied to specific applications. Hence
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we focus on the problem of using a steerable function as an importance function.

The integral in Equation (3.8) can be expressed as a sum of integrals over a number

of subdomains

Ipsq � »
D1

fpxq gpx, sq dx � »
D2

fpxq gpx, sq dx� ... � »
Dn

fpxq gpx, sq dx,

where D � D1YD2Y...YDn such that DiXDj � tu � i � j. This domain partitioning

is useful since it is usually easier to sample from the steerable importance function,

gpx, sq (or its approximation), over the subdomains rather than over D. For example,

gpx, sq could be approximated with a piecewise constant function and the subdomains

could be simplices of the appropriate dimension. The disadvantage of partitioning

the domain and sampling independently from each domain is that it becomes more

difficult to make guarantees about the quality of distribution of samples between

subdomains.

The overall strategy for drawing each sample, from a steerable function proceeds in

two steps: (1) randomly choosing a subdomain, accounting for the integral of the

importance function within it; (2) drawing samples from within that subdomain, ac-

cording to the distribution within it. The data structure described in Section 3.2 can

be used for selecting a subdomain. The latter step is closely related to the actual ap-

proximation and partitioning of the domain. If a piecewise constant approximation is

used in conjunction with simplices as the subdomain, the second step reduces to sim-

ply generating random samples within simplices. We illustrate the overall procedure

using an example, describing the weighting process in detail (see Section 3.4).
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3.3.2 Selecting a subdomain

Given the partitioned domain D and its partitions Di, i � 1, 2, 3, ..., n the problem,

that we are interested in, is to randomly select a subdomain Dk according to the inte-

gral of the importance function gpx, sq within the partitions; the importance function

is defined for a given parameter value s � s0.

One possible algorithm to solve this problem would be to actually integrate the impor-

tance function over each partition, and use a hierarchical structure structure similar

to probability trees [67]. The problem, however, is that the integral of the importance

function within each domain is dependent on the value of the parameter s. Thus, for

a new value of s, the integrations would have to be repeated. In this section we de-

scribe a way in which the steerability of the importance function could be exploited,

to construct a more efficient algorithm.

If gpx, sq is a steerable function we can write it as an inner product of a steering

function and a steerable basis vector. Further, if the integral of the importance

function over each subdomain Di is steerable we can write

Fipsq � 〈Ψpsq, Φpxq〉 , (3.9)

where Ψpsq is the steering vector and Φpxq is the basis vector. This is trivially satisfied

if the importance function is approximated by a piecewise constant function over a

triangular domain, for instance. Although this is not a harsh constraint (especially

since approximation by a steerable function is sufficient), care needs to be taken to

ensure that this is actually the case.

Recall that the data structure presented in Section 3.2 allowed the selection of a

subdomain problem in logarithmic worst case asymptotic time, of the number of sub-
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domain. The assumptions made by the data structure were that: (1) the probabilities

Fipsq could be computed in constant time at each of the leaves ; (2) at each internal

node, the sum of probabilties of the child nodes could be computed in constant time.

The first of these two requirements can be satisfied by storing precomputed Φpxq
vectors at each leaf. The vectors associated with internal nodes are simply the sum

of the vectors stored in the child nodes.

The tree traversal, for a given value of the parameter s is performed by first computing

Ψpsq and then performing innerproducts at each stage from the root down to a leaf

node. The number of dot products required is Opk log nq where k is the number of

bases used in the steerable representation of Fipsq. For functions which can be repre-

sented with few bases, k can be considered a constant and the method is logarithmic

in the number of partitions of the domain. The method is practicable if the integral

of the importance function within each partition of the domain is narrow-band or at

least reasonably approximated by a narrow-band function.

3.3.3 Sample weight computation

The weight associated with each sample must take into account two factors: (1) the

probability of choosing the particular subdomain from which the sample was drawn ;

(2) the probability density with which the sample was chosen within the subdomain.

The exact weight used depends on the partitioning scheme and the approximation

within the subdomains of the importance function (see Section 3.4 for an example).
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3.4 Application: Environment map sampling

Importance sampling strategies appear in a wide variety of forms, from sampling in-

cident illumination using a simple cosine distribution, to finely adapting the sampling

to a particular BRDF, or to features of the environment. In recent years consider-

able attention has been given to importance sampling of environment maps. There

are two justifications for this focus: First, environment maps frequently encode high-

dynamic range light sources [32] and therefore represent a significant challenge for

efficient sampling. Secondly, light from distant sources, as represented by an environ-

ment map, is spatially independent, which greatly simplifies the task of importance

sampling by reducing the dependence of such distributions to direction only.

In the context of estimating reflected radiance, a variance reduction strategy must

meet several inherent requirements [58], plus an additional property that should be

met if at all possible:

1. Estimate the distribution of incident illumination

2. Generate samples distributed according to the estimated illumination

3. Compute the density of each sample

4. Maintain stratification (if possible)

If the incident illumination is defined by an environment map, the first requirement

is partially met; the only additional aspects that should be addressed are occlusion

and weighting by the cosine of the incident angle, as the incident radiance is always

integrated with respect to projected solid angle. The second requirement can be

met by approximating the incident illumination using piecewise constant functions,

or other simple approximations [63], which admit sampling algorithms. The third
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requirement is that of computing the density with which a given sample was drawn

which requires that the pdf be normalized. This can always be accomplished through

numerical integration of the approximating function. However, such normalization

is generally significantly more costly than drawing samples, as it involves the entire

importance sampling function. We refer to the latter as the renormalization problem,

as it is frequently a significant challenge to achieving unbiased importance sampling

that is computationally feasible.

This section presents a strategy to sample a product of two functions and demonstrate

that it can be used to efficiently sample high-dynamic-range environment maps to

estimate reflected radiance. Several methods have been proposed to efficiently sample

environment maps and some of them even sample from the product of illumination

and surface reflectance functions (see Section 3.4.1). Here, we describe how this

could be achieved by defining a steerable importance function to be the product of

sharply varying incident illumination and a smooth steerable function; we also detail

the scheme to draw correctly-weighted samples from this importance function. By

sampling from an importance function that is the product of illumination over the

sphere of directions and the positive cosine lobe defined by the surface normal, the

variance in the estimate can be reduced since (1) “wasted” samples that lie below the

tangent plane are not generated and (2) directions that are close to the horizon are

down-sample.

While the illumination is known a priori, the importance function also depends on

a dynamically oriented clamped-cosine lobe. When accounting for changes in the

distribution of incident illumination above the local tangent plane and/or weighting

by the cosine of the incident direction, all but the first requirement become more

difficult to meet: generation of samples, computation of the densities, and maintaining

stratification. These difficulties stem, in part, from the problem of renormalizing the
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Figure 3.3: Figure shows the lower dimension analog of our steerable importance
function for one orientation of the clamped cosine and a 2D environment map which
is a function of u P S .

constantly-changing distribution.

We derive a method that solves the renormalization problem decisively by means of

a novel hierarchical organization that encodes all possible variation very efficiently in

advance using what amounts to steerable functions. We consider the surfaces being

rendered with respect to the environment maps to steer the importance function

using a cosine lobe defined by the surface normal. This lobe is clamped to zero at

the tangent plane of the surface, which has the effect of ignoring all illumination that

arrives from below the tangent plane.

3.4.1 Reflected radiance

Reflected radiance Lpx, ωrq due to direct illumination from distant sources, can be

expressed as the integral»
S2

Lpωiqρpx, ωi, ωrqmaxpn.ωi, 0qV px, ωiqdωi (3.10)
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since radiance incident from distant sources, Lpωiq, is only a function of direction.

Here x is a point, with normal n, on a surface with ρ as its bidirectional reflectance

distribution function (BRDF) and the integration is over the sphere of incoming

directions ωi. We will refer to the third and fourth terms in the integrand as the

clamped-cosine and visibility terms respectively.

A number of sampling strategies have been proposed to efficiently estimate this in-

tegral; these methods fundamentally differ in their choice of an importance function

(see Section 1.6). The method of structured importance sampling [2] defines an im-

portance function that is a carefully chosen combination of illumination density and

solid angle separating the samples. The samples are distributed using a point re-

laxation algorithm and the incident illumination is approximated with several point

light sources. Further, as an acceleration technique, the light sources are sorted in de-

creasing order of power and sampled deterministically in that order. Another method

that approximates the illumination with point light sources [77], extends hierarchical

Penrose tiling to quickly sample the 2D environment map; the samples also satisfy

certain noise properties. While both these techniques require far fewer samples than

näıve sampling of only the clamped-cosine term to produce images of similar visual

quality, many (about half) of the samples generated are likely to lie below the tangent

plane and thus be rejected. In addition, the cosine term is ignored which means that

bright sources near the horizon are sampled as profusely as sources of similar power

at the pole.

Some methods include the surface BRDF [18, 26, 24] in the importance function.

This allows efficient sampling of a combination of high frequency illumination and

glossy surfaces with a large specular component. Lawrence et al.. [63] introduced a

fairly general numerical method for approximating and numerically inverting cumu-

lative distribution functions, which lends itself to both stratification and importance
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sampling. Ghosh et al.. [45] proposed a method to account for temporal coherence

in animation sequences involving environment maps. In this paper, we describe a

method that uses the clamped-cosine weighted illumination as an importance func-

tion thus automatically accounting for the cosine importance given a normal direction,

and also ensuring that all samples are generated above the tangent plane.

Ramamoorthi and Hanrahan first observed that a clamped cosine lobe could be very

effectively approximated using a small number of spherical harmonic basis functions;

indeed, nine such coefficients attains a fit that is deemed sufficiently accurate for most

graphics applications [85]. They also observed that the spherical harmonic represen-

tation of a rotated lobe is no more complex than a static one in that no higher-order

terms are added as a result of any rotation. It is precisely these observations that we

build upon here to obtain an importance sampling function that can dynamically ac-

count for any incident surface orientation by pre-computing its response to a steerable

lobe; in this case, a clamped cosine lobe.

We shall see that this solves the renormalization problem by making renormaliza-

tion of an arbitrary piecewise linear importance sampling function equivalent in cost

to re-weighting a single point in the environment map. We first approximate the

environment map as a piecewise-linear 2D function; Section 3.4.2 explains how the

piecewise-linear function can be re-weighted and re-normalized very efficiently by a

clamped-cosine lobe, thus making the entire importance-sampling function “steer-

able”. Stratified sampling of our piecewise-linear importance sampling function is

performed using the method described in Section 2.3.1. Figure 3.3 shows such an

importance sampling function, that is dynamically re-weighted and re-normalized via

a steerable clamped cosine lobe along with the stratified samples drawn from it.
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3.4.2 The steerable importance function

By partitioning the domain of integration in Equation (3.10), S2, into spherical tri-

angles Si, i � 1, 2, ..,M we rewrite the r.h.s. of the equation as the sum of integrals

over Si

M̧

i�1

»
Si

Lpωqρpx, ω, ωrqf pn, ωqV px, ωq dω, (3.11)

where f pn, ωq � maxp〈ω, n〉 , 0q.
To efficiently estimate this integral, we use the method outlined in Section 3.3.1.

Here, the sphere of directions, S2, corresponds to the domain D and the spherical

triangles Si correspond to subdomains Di. The importance function is approximated

by a piecewise constant function, defined on the planar triangle defined by the vertices

of the spherical triangles of each subdomain. In this section, we show that this leads

to a steerable representation for the integral of the importance function, within each

spherical triangle.

Consider one of the spherical triangles, Si, and the planar triangle △piq defined by

the vertices of Si. Let p � pp0, p1q P r0, 1s2 be a point on △piq defined using the

parametrization ψ : r0, 1s2 Ñ △. Disregarding visibility and the BRDF for the

moment, and switching to the above parameterization, we get

1»
0

1»
0

Lpµipp0, p1qq f pn, µipp0, p1qq ϕipp0, p1q |Jipp0, p1q| dp0 dp1 (3.12)

where ϕipp0, p1q arises as a result of using a change of variables from the plane onto
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the sphere and µipp0, p1q is the unit vector along ψipp0, p1q. That is,

µipp0, p1q � ψipp0, p1q}ψipp0, p1q} , ϕipp0, p1q � µipp0, p1q � n△piq}ψipp0, p1q}2 (3.13)

and n△piq is the unit normal of △piq.
We normalize the function |Jipp0, p1q| , to make it a pdf and obtain the Monte Carlo

estimator

Gi

Ņ

j�1

Lpµj
i qf �n, µj

i

	
ϕ

j
i (3.14)

where samples ψj
i drawn from the pdf that is proportional to |Jipp0, p1q| are used to

obtain µ
j
i and ϕ

j
i . We derive ψi such that the Jacobian is linear in both parameters

and equal to the illumination weighted by the clamped cosine at each vertex of △piq
(see Appendix). The normalization factor Gi is simply the integral of the Jacobian

and is given by

Gi � 1»
0

1»
0

|Jipp0, p1q| dp0 dp1. (3.15)

Replacing the BRDF and visibility terms and adding the estimates over all spherical

triangles Si, we arrive at our estimate of the total reflected radiance along ωr as

M̧

i�1

Gi

Ņ

j�1

Lpµj
i qρpx, µj

i , ωrqf �n, µj
i

	
V px, µj

i qϕj
i (3.16)

Note that the piecewise linear importance function is a linear interpolation of the

product of illumination along directions given by the vertices in the partition of the

sphere of directions and their corresponding clamped cosines for a given normal.
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Figure 3.4: The weight of each triangle vertex is determined by the environment map
and its position relative to the surface under consideration. The weight of the entire
triangle is a linear combination of its vertex weights.

3.4.3 Hierarchical steerable bases

To represent the steerable function in a form that can be stored in the parametrized

probability data structure, we shall use the spherical harmonic approximation of the

clamped cosine lobe first proposed by Ramamoorthi and Hanrahan [85] in the context

of fast approximations of irradiance due to distant sources. Our application will differ

fundamentally, but will nonetheless enjoy the benefits of concise representation and

fast evaluation. First, observe that the function

fpu,nq � maxp〈u, n〉 , 0q, (3.17)

hich is what we have been referring to as a clamped cosine lobe, can be approximated

by a finite linear combination of spherical harmonics (SH):

fpu,nq � ķ

i�0

aipnqYipuq, (3.18)
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where we have treated the spherical harmonics as functions defined on the sphere, S2,

rather than the more traditional function of two angles. We have also “linearized” the

indexing of the basis functions, which are traditionally indexed with double subscripts

denoted by ℓ and m, with ℓ � 0, 1, 2, . . . , and �ℓ ¤ m ¤ ℓ. In particular, our ordering

coincides with the subscripts p0, 0q, p1,�1q, p1, 0q, p1, 1q, p2,�2q, p2,�1q, p2, 0q, p2, 1q,
and p2, 2q, etc. Here apnq is the vector of SH coefficients after being rotated using

the normal n.

The product of the incident distant illumination along u and the clamped cosine at

u for a given normal n can be expressed as

Lpuqfpu,nq � Lpuq ķ

i�0

aipnqYipuq� ķ

i�0

LpuqaipnqYipuq� 〈apnq, wpuq〉 (3.19)

where wpuq � LpuqYpuq is a vector containing the SH bases associated with a

direction u, weighted by the illumination along that direction. Thus the product

Lpuqfpn,uq is steerable.

We define the function |Jjpp0, p1q| in each triangle △pjq with vertices A, B and C as

a linear combination of products of illumination and the clamped cosines at vertices.

The integral of the Jacobian (see Equation (3.15)) within each triangle is simply the

volume of the truncated triangular prism defined by the triangle. Given that the

Jacobian varies linearly within each triangle △pjq, we can write Gj as 〈apnq, Wj〉

where

Wj � Areap△pjqq
3

�
wa

j �wb
j �wb

j

	
. (3.20)
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Figure 3.5: 2D illustration of the algorithm used to construct the tree with steerable
weights. Here segments are equivalent to triangles in the 3D setting. The vectorsof
weights associated with the triangles are at the leaves of the tree, and are propogated
up to the root; weights at internal nodes are computed simply as the sumof the weights
of their children.

We precompute and store wpuq at each vertex in the partition of the sphere of direc-

tions and a weight Wj associated with each triangle △pjq. Given a normal n we first

compute apnq and then Gj in constant time for each triangle △pjq with just one dot

product.

Further, we can compute the integral of the piecewise linear importance function over

a set of triangles The next observation is crucial: If Q is any set of triangle indices,

then

j̧PQWj �
j̧PQ 〈a, Wj〉� 〈

a,
j̧PQ Wj

〉� 〈a, WQ〉 ,

here WQ is a new collection of nine coefficients. Thus, the total weight of all the

triangles combined is, once again, represented by a collection of the same number of

spherical harmonic coefficients; summing the contributions of any number of triangles

in any orientation does not introduce higher-order terms.

To fully exploit this property, we organize the triangles in the partition of the sphere
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Figure 3.6: After the spherical harmonic representation of the weight at each vertex
has been propagated up to the root, stratified sampling of a function of surface ori-
entation is straightforward: As the cosine lobe is changed, the branching probabilities
along each path is altered. To reach a leaf triangle with the correct probability, only
9-element dot products along the path to that triangle are computed. Thus, the cost
of generating a sample and computing it correct density is Oplognq, where n is the
number of triangles.
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of directions then organize hierarchically as a binary tree. Each triangle is assigned a

vector of nine values, which is then propagated up the tree, adding the weights of the

children at each internal node, until the root is reached (see Figure 3.5). The algorithm

for generating samples from the resulting piecewise-linear function is illustrated in

Figure 3.7, and the algorithms for generating the rotated cosine lobe coefficients and

for traversing the three structure are shown in Algorithm 3.1, respectively.

3.4.4 Algorithm

Preprocess: The preprocess step is composed of two main stages– triangulation of

the environment map and construction of a reasonably balanced binary tree. While

a balanced tree is not required for correctness of the algorithm, balance ensures an

OpS log N△q asymptotic bound on the execution time if S stratified samples are re-

quired to be drawn for any given normal vector and the triangulation consists of N△

triangles. The domain is triangulated by uniform subdivision of an icosahedron fol-

lowed by a step of adaptive subdivision. During adaptive subdivision, triangles are

subdivided if the deviation of the linear approximation within them from the actual

illumination is found to be greater than a threshold. After subdivision, vertex and

triangle weights are computed and stored.

We build a binary tree that has the triangles randomly distributed as its leaf nodes.

Each triangle is associated with a weight, which is the volume of the truncated prism

formed by raising its vertices by the appropriate heights. We approximate this volume

with one third the area of the triangle times the average height at its vertices. Al-

though this is an approximation and makes the importance function deviate slightly

from the actual function on the sphere, it does not introduce a bias so long as the

weights computed are in accordance with the densities that samples are drawn from.
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This approximation converges to the correct volume as the triangulation is refined.

The internal nodes of the tree represent clusters of triangles and their volumes can

each be written as a sum of the volumes of their respective child nodes. Thus we sum

up the individual basis vectors of the children to compute the basis vector at each

internal node. The actual volume, including the cosine weighting, is computed by a

dot product of this weighted basis vector with the coefficient vector of the clamped

cosine which is provided during query. Thus we build the tree in a bottom-up fashion,

at each node summing up and storing the basis vectors of child nodes (see Figure 3.5).

The volume of the root, which represents the volume under the importance function,

is computed for a given normal direction by just one dot product which trivializes the

cost of renormalization.

Sample Generation: Given a normal direction and two random variables chosen

uniformly in r0, 1s we draw a single sample from our importance function in three

steps: Selecting the triangle to sample from, drawing a sample from that triangle

according to the weights defined at the vertices and actually computing the density

with which the sample was chosen.

Starting with the root we evaluate the volume at each internal node (one dot product

each) and use the information to guide the path down to the leaf. At each level the

path favors the child with a higher volume (see Figure 3.7). Thus using one of the

random variables, and Oplog N△q inner products (each of 9 coefficient vectors), we

pick a triangle proportional to the integral of the linearly-varying densities (See Algo-

rithm 3.1). Once we pick a triangle we re-scale the random value used to traverse the

tree to r0, 1s and sample from the triangle using the two random variables as shown

in Section 2.3.1.

Computing the density with which the given sample was chosen is trivially obtained
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Figure 3.7: At each node during the traversal the integral of the importance function
over the leaf nodes, under its subtree, is approximated with just one dot product.
One of the children is visited, depending on the branching probabilities which are
proportional to the integrals in each subtree.
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Algorithm 3.1 The basic algorithm for stratied sampling of the dynamically re-
weighted piecewise-linear importance function. The variables ξ1 and ξ2 are assumed
to be stratified random variables in r0, 1s � r0, 1s. Note that step 18 introduces a bias
which can be eliminated by a slight increase in computational cost (Algorithm 3.2). c1
= 0.429043, c2 = 0.511644, c3 = 0.743125, c4 = 0.886227, c5 = 0.247708 according
to Ramamoorthi and Hanrahan [85].

function Sample (n, ξ1, ξ2)

1: a � RotateLobeCoeffspnq
2: w � weight coefficients of tree
3: v � root of tree
4: while v is not a leaf do
5: wl � 〈a, LeftWeightCoeffspvq〉
6: wr � 〈a, RightWeightCoeffspvq〉
7: w � wl

wl � wr
8: if ξ1   w then

9: ξ1 � ξ1

w
10: v � LeftChildpvq
11: else

12: ξ1 � ξ1 � w

1� w
13: v � RightChildpvq
14: end if
15: end while
16: ps△, ρ△q � SampleTrianglep Trianglepvq, ξ1, ξ2 q
17: if 〈n, s△〉   0 then
18: s△ � � s△
19: end if

20: return

�
s△,

ρ△

〈a, w〉

�
function RotateLobeCoeffs (n)

a0 � c4
a1 � 2c2ny

a2 � 2c2nz

a3 � 2c2nx

a4 � 2c1nxny

a5 � 2c1nynz

a6 � c3n
2

z � c5
a7 � 2c1nxnz

a8 � c1
�
n2

x � n2

y

	
return a
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by the ratio of the actual height at that sample (which is obtained by interpolating

between the heights of the vertices) and the total volume associated with all the

triangles (which is the volume of the root). Both are evaluated in constant time.

3.4.5 Results and discussion

Figure 3.8 shows the importance function as the product of the environment map

values and the oriented clamped cosine lobe for two different environment maps, each

with a differently oriented lobe; the resulting samples drawn are also shown.

Figure 3.10 shows images rendered by using steerable importance sampling. Results

with different numbers of samples of a scene with diffuse, glossy and specular materials

are shown.

The benefit of using the clamped cosine as the steering function for importance sam-

pling is realized when most of the bright luminaires in the environment lie below the

tangent plane or close to the horizon. In such situations, traditional environment

mapping algorithms like structured importance sampling, that do not account for the

local normal, are inefficient because most of the samples are either below the tangent

plane or contribute little to the integral. We compare steerable importance sampling

against standard stratified importance sampling by obtaining irradiance estimates for

a set of normal directions by varying the polar angle and comparing variances in the

estimates. The standard stratified importance sampling method treats the environ-

ment map image as a discrete 2D function from which stratified samples are drawn

using numerical inversion [2].

The gain due to the steerability can be seen to achieve significantly lower variance,

especially when the number of samples is few or the normal is facing away from
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Figure 3.8: Top left: Input map of Grace Cathedral. Top right: clamped-cosine func-
tion (with iso-polar lines in red). Bottom left: the importance function (clamped-
cosine weighted input). Bottom right: Samples(green) drawn from the importance
function (juxtaposed on dimmed input). Very few of the samples lie in the low-
intensity regions of the map and none in the hemisphere below the tangent plane.
A large number(100,000) of samples is shown to highlight the effectiveness of the
method.
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Figure 3.9: Comparison plots of variance in irradiance estimates using steerable im-
portance sampling against standard stratied importance sampling. The latter uses the
2D density of the illumination in the environment map as an importance function.
Tests were run using the St.Peters Basilica environment map, on a set of nor- mal
directions by varying the polar angle in the interval p0, πq. There is a significant
increase in variance for normals facing away from the illumination using the stan-
dard method as a result of not considering local surface orientation in the importance
function.
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Figure 3.10: Figure shows images rendered using our sampling algorithm within the
“Galileo’s Tomb” environment map. Insets show that the variance is tolerable even
with few samples and quickly converges as the number of samples is increased.
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Figure 3.11: Comparison of the mean of the steerable importance sampling (SIS) esti-
mator against a brute force Monte Carlo estimator (cosine-sampling of hemisphere).
Blue dashed lines in the plots are for the trusted estimator while red error bars show
the mean and variance for the SIS estimator. Finally, a plot of variance of the SIS
estimator, against increasing number of samples is shown (bottom right).

bright illumination. Figure 3.9 shows the variances in irradiance estimates using

stratified importance sampling and steerable stratified importance sampling for 16

and 64 samples. However, there are two possible ways that a bias might be introduced

in the estimator.

Ringing in the lobe approximation: Because the clamped cosine lobe is approx-

imated by its projection onto a finite set of basis functions, there is a small amount

of ringing near the derivative discontinuity. The ringing causes the approximation to

become slightly negative where the lobe is clamped to zero. This is easily fixed by

adding an offset (approximately 0.09) to the coeffiient corresponding to the constant

basis function. This will increase the values uniformly, thus somewhat reducing the

effectiveness of the importance sampling by decreasing the overall variation. This

approach completely eliminates the possibility of negatively weighted triangles and

negative densities, and introduces no additional bias. However, uniformly raising the
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value of the function causes some stray samples, with low probability, to be generated

in triangles that should not have been sampled and hence marginally increases the

variance of the estimator.

Samples in the wrong hemisphere: A second minor source of bias is due to

samples that are occasionally generated below the horizon. This results from an ap-

proximation to the clamped cosine lobe that is not exactly zero in the hemisphere

below the horizon. Consequently, there is a small probability that it will be sampled.

This problem is exacerbated by the global offset that guarantees the function is non-

negative. One solution is to simply ignore such samples which amounts to rejection.

Another solution is to ignore the bias due to reflecting them into the positive hemi-

sphere; as they occur infrequently, there is little error in any case. However to remove

this bias, we increase the density of all samples generated to account for the density

of those that arrived there through reflection. Thus, whether a sample falls in the

correct hemisphere or not, we add the densities of the two antipodal directions, as

shown in Algorithm 3.2. This policy will generate a very low-probability “ghost” of

the opposite hemisphere, and is therefore likely to produce a small number of samples

that are not very useful, but the resulting estimator will be unbiased.
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Algorithm 3.2 A modified version of the basic algorithm (Algorithm 3.1) for stratified
sampling of the dynamically re-weighted piecewise linear importance function. The
difference lies in the way samples are weights (lines 17 onwards).

function Sample (n, ξ1, ξ2)

1: a � RotateLobeCoeffspnq
2: w � weight coefficients of tree
3: v � root of tree
4: while v is not a leaf do
5: wl � 〈a, LeftWeightCoeffspvq〉
6: wr � 〈a, RightWeightCoeffspvq〉
7: w � wl

wl � wr

8: if ξ1   w then

9: ξ1 � ξ1

w
10: v � LeftChildpvq
11: else

12: ξ1 � ξ1 � w

1� w
13: v � RightChildpvq
14: end if
15: end while
16: ps△, ρ△q � SampleTrianglep Trianglepvq, ξ1, ξ2 q

{Modification to eliminate bias}

17: ρ� � GetDensitypa,�s△q
18: if 〈n, s△〉   0 then
19: s△ � � s△
20: end if

21: return

�
s△,

ρ△ � ρ�
〈a, w〉

�
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Chapter 4

Adaptive, bandwidth-based

sampling

Over the last couple of decades, the problem of light transport in image synthesis

has grown to become tremendously sophisticated, inspiring theoretical innovations

and development of efficient algorithms. Several techniques have been proposed, that

address a wide variety of problems in this area: (1) Physically based models and

algorithms for simulating complex optical phenomena; (2) efficient algorithms that

solve the light transport problem in the context of large, complex scenes that involve

billions of optical interactions; (3) algorithms that exploit recent developments in

graphics hardware for approximating solutions to simple light transport problems

in real-time; (4) strategic preprocessing techniques that relieve the computational

burden during the main algorithm’s execution; (5) reduced error compression schemes

for storing precomputed data. Carefully-chosen, informed sampling strategies play a

crucial role in substantially improving the efficiency for each of the above classes of

problems.
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Smart sampling techniques are indispensible in the context of compact representation

and high-fidelity reconstruction of functions. The general nature of this well-studied

problem has resulted in a vast body of literature, spanning multiple fields. Several

sampling algorithms, with different qualities, have been proposed depending on the

characteristics exhibited by the functions under consideration.

Monte Carlo integration is another important context where intelligent sampling has

a dramatic effect. The error in Monte Carlo estimates is inversely proportionate to a

function1 of the number of samples used. One strategy for reducing error is to simply

increase the number of samples used in estimation. This quickly becomes impractical,

since integrals that appear in light transport are of high dimensionality [30, 114].

Another, more practical solution is to control the allotment of number based on the

expected error. This amounts to predicting the rate at which the integrand varies,

since the error in Monte Carlo integration is proportionate to the variance of the

integrand.

In this chapter, after providing a brief introduction to some common analysis tools

(see Section 4.1), we present a study of the radiance function in image synthesis from

a signal processing perspective. For this we use a framework proposed by Durand

et al [36] which is described (with a few embellishments) in Section 4.2. Then, we

explore the use of the analysis framework to suggest sampling strategies for both kinds

of problems discussed above—adaptive sampling for reconstruction and prediction of

the variance of integrands. We apply the sampling strategies for image synthesis with

a finite-size-aperture camera model (see Section 4.3) since the two problems form an

interestingly antagonistic pair while simulating depth of field.

1The exact function depends on the sampling technique used. The convergence of näıve Monte
Carlo is Op1{?nq.
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4.1 Frequency analysis: A brief review

The study of signals—physical quantities, usually measurable through time or space—

is of great interest in engineering; the description of mathematical tools for analysing

signals constitutes a substantial body of literature. One such tool for analysis in-

volves projection of a signal onto a number (possibly infinite) set of basis functions

and studying the distribution of the results of the projection. The particular char-

acteristics of the signal that this distribution provides insight into depend on the

properties of the bases.

Commonly, the set of basis functions is chosen so that the functions represent different

“scales” of variation within the domain. Decomposing signals as a linear combination

of such functions—that vary at different rates—provides invaluable information about

the overall trends of the original signal. This process, called frequency analysis, has

become a tremendously popular tool with applications in a wide variety of fields.

This section provides a brief review of concepts in digital signal processing that will

be used in the following sections of this chapter.

4.1.1 The Fourier series

A real signal, f : R Ñ R, is called a periodic signal with period T if fpxq � fpx�T q.
A finite signal in time (or space), g : ra, bs Ñ R is one that is defined over an intervalra, bs. The duration of a finite signal in time is defined as the difference between its

intervals, b� a. Using the finite signal g, a new signal can be constructed as

g1pxq � $''&''% gpxq if x P ra, bs
0 otherwise

,
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which can be used to define a periodic signal

m�8̧
m��8 g1px�mT q

with period T � b � a. The periodic signal is simply the sum of all versions of

the finite signal that have been shifted in time by multiples of the latter’s duration.

Thus a periodic signal can be defined in terms of a finite signal, which represents one

period, and a finite signal can be defined in terms of a periodic signal, by extracting

one period.

Any periodic signal, and consequently any finite signal, can be described as the sum

of sinusoidal signals. This result, known as the Fourier series, was proposed in the

nineteenth century by Joseph Fourier. The computation and study of Fourier series is

known as harmonic analysis, and is extremely useful in decomposing approximations

or solutions to large periodic signals into smaller chunks that are relatively simpler to

solve. For example, consider the problem of solving a linear, homogeneous ordinary

differential equation: If the equation can be solved in the case of a single sinusoid,

solutions to larger, more complicated functions can be approximated by representing

the functions as sums of sinusoids and appropriately summing the individual solutions.

As initially proposed by Fourier the series expansion of fpxq, x P r�π, πs, is given as

fpxq � 1

2
a0 � 8̧

n�1

an cos nx� 8̧
n�1

bn sinnx (4.1)
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where

a0 � 1

π

π»
π

fpxq dx

an � 1

π

π»
π

fpxq cosnx dx

bn � 1

π

π»
π

fpxq sinnx dx. (4.2)

The result can be generalized to other intervals than r�π, πs by a simple change of

variables to transform the limits of integration. Further, the notion of Fourier series

may be extended to complex coefficients: If fT is periodic in r�T {2, T {2] the complex

Fourier series expansion of fT can be written as

fT pxq � 8̧
n��8An e

ip2πnxq{T
An � 1

T

T {2»�T {2 fT pxq e �ip2πnxq{T dx. (4.3)

The fourier series converges to the function at points of continuity and the average

of the two directional limits at points of discontinuity.
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4.1.2 The Fourier transform

The complex coefficients in the Fourier series expansion (see Equation (4.3)) are

functions of the time period of the original signal. We define new coefficients

Fnpνq � TAnpT q� T {2»�T {2 fT pxq e �ip2πνxq dx (4.4)

by expressing An in terms of ν � n{T . The Fourier series expansion in terms of these

new coefficients is given as

fT pxq � 1

T

8̧
n��8Fnpνq e ip2πνxq. (4.5)

As T increases, ν decreases, causing the resolution within the summation to increase.

That is, the larger the time period of the signal, the finer the terms in the Fourier

series. In the limit, we obtain

fpxq � lim
TÑ8 fT pxq � 8»�8 Fpνq e ip2πνxq dν (4.6)

where

Fpνq � 8»�8 fpxq e �ip2πνxq dx (4.7)

is known as the Fourier transform of fpxq and is defined for any signal provided the

integral in Equation (4.7) converges. Equation (4.6) represents the inverse Fourier

transform of F(ν).

Definition 4.1. The Fourier transform and its inverse are typically denoted using
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operators Fand F�1:pF � fq pxq � 8»�8 fpxq e �ip2πνxq dxpF�1 � Fq pνq � 8»�8 Fpνq e ip2πνxq dν (4.8)

The result of applying the Fourier transform on a signal is a function of the “fre-

quency” ν. If fpxq is represented as a sum of sinusoids of different frequencies with

different amplitudes and phases, Fpνq defines the amplitude and phase of each sinu-

soid at frequency ν so that the combination yields fpxq. Specifically, if Fpνq � pν�iqν ,
the magnitude of the sinusoid at frequency ν is given by |F pνq| � b

p2
ν � q2

ν and the

phase is given by argF pνq � arctan qν{pν .

The function fpxq can be visualized to exist in two different forms, in different do-

mains2—one being the original domain of the signal (usually time or space) and the

other being the “Fourier frequency domain”. Transformations applied to fpxq re-

sult in corresponding transformations in Fpνq that are different, in general, from the

transformations in the primal space. One such pair of equivalent transformations that

is of tremendous importance is the multiplication-convolution pair.

Theorem 4.2. The Fourier transform of the convolution of two functions is equivalent

to the product of the Fourier transforms of the functions. That is,pF � pf 
 gqq � pF � fq pF � gq . (4.9)

2the domains of fpxq and Fpνq are called the primal and dual domains respectively.
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Proof. The convolution of the two functions can be written aspf 
 gq � 8»�8 gpyqfpx� yq dy� 8»�8 gpyq��� 8»�8 Fpνq e ip2πνpx�yqq dν

�Æ
dy. (4.10)

Rearranging terms and swapping the order of integration, this becomespf 
 gq � 8»�8 Fpνq��� 8»�8 gpyq e �ip2πνyq dy

�Æ
 e ip2πνxq dν� 8»�8 FpνqGpνq e ip2πνxq dν� pF�1 � pFpνqGpνqqq . (4.11)

Applying the Fourier transform on both sides yields the desired result.

4.1.3 The Fourier transform in higher dimensions

The Fourier transform’s definition can be extended to higher dimesional domains by

simply increasing the dimensionality of the time or spatial variable and, correspond-

ingly, the frequency variables. The k dimensional fourier transform of a function, f ,

can be written aspF � fq pxq � 8»�8 ... 8»�8 fpxq e �ip2π〈Γ,x〉q dxpF�1 � Fq pΓq � 8»�8 ... 8»�8 FpΓq e ip2π〈Γ, x〉q dΓ, (4.12)
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where x P C
k is the spatial variable and Γ P C

k is the frequency variable. When

k � 2, we getpF � fq px1, x2q � 8»�8 8»�8 fpx1, x2q e �ip2πpν1x1�ν2x2qq dx1 dx2pF�1 � Fq pν1, ν2q � 8»�8 8»�8 Fpν1, ν2q e ip2πpν1x1�ν2x2qq dν1 dν2. (4.13)

The Fourier transform is separable, which means that the 2D Fourier transform can be

obtained by first applying a 1D Fourier transform with respect to x1 and then applying

another, on the result, with respect to x2; similarly for the inverse transforms.

4.1.4 Fourier analysis and sampling

The distribution of |Fpνq| is known as the power spectrum. The power spectrum of a

function provides intuition about the distribution of the energy of the function, over

the range of frequencies. The interval between the minimum and maximum non-zero

values in the power spectrum is called the bandwidth of the function. Continuous

signals with little variation typically have a low bandwidth (bandlimited signals have

a finite bandwidth) while functions with discontinuities typically have infinite band-

width.

There are two categories of applications in which sampling problems constantly arise:

(1) acquisition and reconstruction of continuous signals in discrete time and (2) sam-

pling according to a distribution for Monte Carlo integration. We consider each of

these categories and describe how a Fourier analysis of the signal can be used to

make predictions about the consequences of sampling rates on the fidelity of the

reconstructed signal.
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If a fixed, uniform rate is used for sampling a signal, it is likely that variations in the

original signal that are too rapid to be observed with the given sampling rate will not

be recsontructible. The question naturally arises:What sampling rate guarantees that

the reconstructed signal will be identical to the input? Although the Nyquist-Shannon

sampling theorem provides a partial answer by detailing a condition that is sufficient

for this requirement, the necessary conditions are not always straightforward to arrive

at. The Nyquist-Shannon theory states that bandlimited signals can be reconstructed

perfectly if the sampling rate is greater than a certain frequency called the Nyquist

frequency. Although frequencies, ν, above the Nyquist frequency, νN , are observable

in the sampled signal, they are ambiguous since they cannot be distinguished from

νNj � ν and νNj � ν for non-zero integers j; this ambiguity is called aliasing.

Theorem 4.3. If a function fptq contains no frequencies higher than ω cycles per

unit, it is completely determined by giving its ordinates at a series of points spaced

1{p2ωq units apart.

4.1.5 The short-time Fourier transform

Definition 4.4. The short-time Fourier transform f̃pν1, ν2, τx1, τx2q of a function

fpx1, x2q is defined as

f̃pν1, ν2, τx1, τx2q � 8»�8 8»�8 βpx1 � τx2, x2 � τx2qfpx1, x2q e �ip2πpν1x1�ν2x2qq dx1 dx2

(4.14)
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Figure 4.1: Visibility function along a chosen direction (left) and two windowed visi-
bility functions, with windows centered at different locations. The windowing function
is a cosine to the fourth power.

where βpx1, x2q is a windowing function centered around zero. Thus,pF � fq px1, x2q � » »
f̃pu, v, τx, τyq dτx1 dτx2 (4.15)

While the power spectrum of a function is useful in analysing the overall presence

of high or low frequencies in the input signal, the Fourier transform itself provides

no information about which parts of the signal contains the sharp variations. To do

this, typically, the input signal is partitioned into intervals and the fourier transform

of each interval is examined as a separate function. This “chopping up” of the input

signal is equivalent to multiplying the original signal with several small pulses with

widths and centres corresponding to the intervals. These pulses are examples of win-

dowing functions and the resulting transform is referred to as the windowed Fourier

transform.

According to the convolution theorem, the resulting spectrum for each partition will

be a convolution of the spectrum of the original function with the spectrum of the win-

dowing function. Since pulses have infinite bandwidth, typically, windowing functions
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are chosen to be smooth. Regardless, the presence of the frequencies of the windowing

function introduce “leakages” into the results of windowed Fourier transforms. With

appropriately chosen windowing functions, these spurious frequencies can be negli-

gible for reasonably wide widows. As the width of the windows are reduced, higher

frequencies are introduced causing the resolution in frequency space to drop. Thus,

in the limit, the resolution in Fourier frequency space is zero for infinitesimally small

intervals in the original signal3.

4.2 Frequency analysis of light transport

Radiance—a 5D function (three spatial and two directional)—undergoes several po-

tentially complex physical interactions with matter before reaching the camera sen-

sor. Intelligent sampling techniques play a vital role in efficient light transport for two

reasons: without adaptive sampling techniques, discrete intermediate representations

for the inherently analog quantities, like radiance, either tend to become leviathan

structures (if densely sampled) or prone to high reconstruction errors (if sampled too

sparsely); errors in Monte Carlo integrations could prove utterly frustrating without

the use of carefully chosen importance functions.

Intelligent sampling, however, needs to be dependent on the characteristics of the sig-

nal. For this reason, frequency analysis of the radiance function has been considered

an important problem in image synthesis. However, the high dimensionality, presence

of arbitrary discontinuities, non-stationary nature of the phenomena involved (reflec-

tion, refraction, occlusion, etc.) and the substantially complex filtering operations

that the radiance function undergoes in its interaction with matter make it a consid-

erably challenging target for frequency analysis. Several works in the image synthesis

3This is in accordance with the uncertainty principle.
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literature analyse the light transport problem from a signal processing perspective;

however, they make restrictive assumptions so that the problem remains tractable.

While analysing radiance functions in the frequency domain, two distinctly different

types of frequencies, that each explains a particular set of optical phenomena, can be

observed: spatial frequencies that represent the variation in the radiance with position

and angular frequencies that represent the variation of radiance at a point, as a func-

tion of angle. Intuitively, high spatial frequencies can be imagined to be “injected”

into the transport process by sharply varying textures, intricate light occluders, small

light sources, etc. High angular frequencies, on the other hand, correspond to effects

like highly glossy or specular reflection (or refraction) and effects due to reflection

off points with high local curvature. Almost all the literature on frequency analyses

of radiance functions either studies strictly spatial or strictly angular frequencies. In

this section we describe a theoretical framework [36] that performs a frequency anal-

ysis of light transport considering both spatial and angular frequencies. This work

determines the effect of certain global light transport transformations on the local

light spectra. Later, we build on this theory to propose means of propagating band-

width information. Further, we extend the theory to account for depth of field effects

due to finite sized apertures and suggest an efficient simulation algorithm using the

predicted bandwidth.

4.2.1 Local lightfield parameterization

Shinya and Takahashi introduced paraxial approximation theory to the image syn-

thesis community and suggested ways of using the theory for raytracing light pencils

rather than rays. In their paper [91], they considered a local neighborhood of light

paths where rays were parametrized with respect to the axial ray. Thus each ray was
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Figure 4.2: The two parameterizations, px, vq and px, θq, for rays in the local neigh-
borhood of a central ray are equivalent under the paraxial approximation [91], when
v � tan θ � θ.

represented using a 4D vector: two dimensions to define the vector from the axial ray

to the ray under consideration, on the transverse plane and the remaining two dimen-

sions to define the angular deviation from the axial ray. Using simple linear paraxial

approximations, Shinya and Takashi constructed system matrices, using Snell’s laws,

that represented the ray vector changes due to basic transport processes.

Durand et al studied the radiance in the neighborhood of a ray as it was affected by

transport processes. They studied a 4D slice of radiance at a virtual plane orthogonal

to a central ray and called this slice the local lightfield. Depending on the transport

phenomenon being studied, one of two parametrizations were used: the two plane

parametrization [21] using the intersection at a parallel plane at unit distance and

the plane-sphere parametrization [20]. The two parametriations are equivalent under

the paraxial approximation (see Figure 4.2).

Following the example of Durand et al, we illustrate the radiance field and its trans-

formations in flatland. We retain their notation for the radiance field in the neigh-
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borhood of a central ray R, ℓRpx, vq, and its Fourier transform, pℓRpΩx, Ωvq. Thus we

have pℓRpΩx, Ωvq � pF � ℓRq px, vq, (4.16)

and the power spectrum of the lightfield is
���pℓRpΩx, Ωvq��� .

4.2.2 Transformations due to transport processes

In this section we describe the transformations undergone by the local lightfield under-

goes transformation and the corresponding transformations to the spectra, through

the different transport phenomena.

Emission

Consider the neighborhood of rays around a point light source emitting light equally

in all directions. Along the spatial axis, the local lightfield is zero everywhere except

at the location of the central ray. At the location of the central ray, since emission

is constant with respect to direction, every point along the angular axis contains

a constant non-zero value. Thus the lightfield is an impulse (Dirac delta) along

the spatial dimension and constant along the angular dimension. Since the Fourier

transform of a Dirac delta is a constant, the spectrum of the lightfield is a constant

along the spatial dimension and a Dirac delta along the angular dimension. This

suggests that the local lightfield contains no angular frequencies and infinite spatial

frequencies. If the light source is not a point, then the geometry of the light source

defines the lightfield along the spatial and angular dimensions. Distant illumination

is constant in space which means that the spectrum is a Dirac delta in space. Thus,
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unoccluded distant illumination contains purely angular frequencies.

Travel through free space

Radiance along a ray remains unchanged during travel through free space. However,

the central ray undergoes a spatial reparameterization. Radiance at a point x after

transport through a distance d is obtained as

ℓRpx, vq � ℓR1px� vd, vq, (4.17)

suggesting that as light travels through free space, the local lightfield is sheared along

the spatial direction. Intuitively, this means that directional variation at a source, for

example, is transformed into angular variation at a receiver located at some distance

from the source. Performing the appropriate change of variables to account for the

reparameterization within the integral for the Fourier transform, the spectrum after

the travel can be expressed in terms of the original spectrum aspℓR1pΩx, Ωvq � pℓRpΩx, Ωv � dΩxq. (4.18)

That is, travel through free space effects a shear in the lightfield spectra along the

angular or directional dimension. When the distance traveled increases, spatial fre-

quencies are pushed farther along the directional axis, thus resulting in high angular

frequencies. We define a linear operator Sd that effects the transformation on the

local lightfield spectrum, due to transport through free space:pℓR1pΩx, Ωvq � pSd � pℓRq pΩx, Ωvq � pℓRpΩx, Ωv � dΩxq. (4.19)
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Material surface interaction

Surface interaction basically involves two important steps apart from the various

reparameterizations: accounting for curvature and the BRDF. Reflected radiance

is obtained by convolving the differential irradiance with the BRDF and hence the

operation on the spectra is a multiplication. That is, the relfected lightfield spectra

are bandlimited versions of the incident spectra, where the bandwidth is determined

by the bandwidth of the BRDF. Diffuse surfaces have zero bandwidth while specular

surfaces have infinite bandwidth in the angular dimension.

Durand et al provide a detailed analysis of surface interaction phenomena. They

derive the relationship between reflected radiance and incident radiance accounting

for different cases. For flat, diffuse surfaces, the reflected radiance is the incident

differential irradiance integrated over all directions and multiplied by the surface

albedo. So the spectrum of the reflected radiance is simply the angular slice of

the result of the incident spectrum convolved with the spectrum of the Jacobian of

lightfield parameterization4.

For curved surfaces with isotropic BRDFs, the shading process is decomposed into

seven steps: (1) reparameterization of the lightfield in the local tangent frame; (2)

accounting for curvature (results in a shear of the spectrum along the spatial di-

rection); (3) computation of the differential irradiance; (4) reparameterization along

specular direction since isotropic BRDFs mostly depend on the difference between

pure specular reflection and the outgoing direction; (5) Convolution by the BRDF in

the primal, which implies that the incident spectrum is bandlimited by the spectrum

of the BRDF; (6) inverse of step 2; and (7) inverse of step 1.

In the case of anisotropic BRDFs, Durand et al factored the BRDF [36] into a Fresnel

4Since
³
fpxqdx � pF � fq p0q
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term (only dependent on incident angle) and a term that is dependent on the difference

between the mirror and exiting angle. This affects only step 5 of the process for

isotropic BRDFs. Thus, for anisotropic BRDFs, before being bandlimited by the

spectrum of the BRDF, the incident spectrum is first convolved by a slice of the

spectrum of the Fresnel term.

Modulation of reflected radiance by a texture function is a multiplication in the primal

and hence a convolution in the Fourier domain. The texture modulated lightfield

spectrum is obtained by convolving the reflected spectrum with the spectrum of the

texture function. Since textures only contain spatial frequencies, the convolution is

purely spatial.

Occlusion

When a radiance field pℓRpΩx, Ωvq encounters an obstacle with a binary visibil-

ity function V px, vq, the resulting lightfield pℓR1pΩx, Ωvq is given as the productpℓRpΩx, ΩvqV px, vq. Consequently, the spectrum after occlusion is obtained as a con-

volution pℓR1pΩx, Ωvq � pℓRpΩx, Ωvq 
 pV pΩx, Ωvq (4.20)

We define a linear operator CV to represent the transformation on the local lightfield

spectrum, due to occlusion:pℓR1pΩx, Ωvq � pCV � pℓRq pΩx, Ωvq � pℓRpΩx, Ωvq 
 pV pΩx, Ωvq (4.21)
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4.2.3 Case study: Analysing soft shadows

Consider the simple scenario where a planar occluder blocks light from a planar

lambertian light source, causing a shadow on a planar lambertian receiver. Assume

for simplicity that all three planes are parallel. Let R be a ray emanating at a point

on the light source and R1 be the ray before it impinges on the receiver after passing

by the occluder. The spectrum of the lightfield in the neighborhood of R1 can be

expressed in terms of the spectrum at R by using the frequency domain transport

operators for transport through free space and occlusion (see Equation (4.19) and

Equation (4.21)):pℓR1pΩx, Ωvq � pSd2 CV Sd1 � pℓRq pΩx, Ωvq, (4.22)

where V px, vq is the binary visibility function at the plane of the occluder and d1 and

d2 are the distances between the planes of the source and occluder and occluder and

receiver respectively. The size of the penumbra region in the shadow depends on a

number of factors: size of the source; distance between the source and occluder; size

of the occluder; distance between occluder and receiver. We now analyse the effect

of each of these factors, using the frequency analysis framework of Durand et al, and

the frequency light transport operators in Equation (4.22).

Size of the source: The spectrum at R, pℓRpΩx, Ωvq, has both angular and spa-

tial content. The actual bandwidth of pℓRpΩx, Ωvq depends on the geometry of the

light source. Intuitively, the smaller the light source, the higher will be the spatial

bandwidth.

Distance between source and occluder: Recall that transport through free space

(Sd1 operator) shears the spectrum along the angular dimension, converting spatial

frequencies into angular frequencies. The extent of the shear depends on the distance
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travelled. If d1 is large, then the transformation of spatial to angular frequencies is

more dramatic. The angular bandwidth after transport to the plane of occlusion is

proportional to the spatial bandwidth of pℓRpΩx, Ωvq and the distance d1. The spatial

bandwidth, however, only depends on the geometry of the light source.

Visibility spectrum of occluder: Occlusion (CV operator) amounts to a convo-

lution of the transported lightfield at the plane of the occluder and the visibility

spectrum (purely spatial frequencies) of the occluder. If the occluder contains small,

intricate features, then its visibility spectrum has a high spatial bandwidth. A con-

volution with this visibility spectrum spreads the incident spectrum along the spatial

direction, thus increasing spatial bandwidth. Note that the information about how

close to the occluder the ray passes, is encoded in the phase of the convolved spectrum

and not in its power spectrum. The angular bandwidth is unaffected by occlusion but

the spatial bandwidth is now proportional to the size of the source and the visibility

spectrum of the occluder.

Distance between occluder and receiver: This transport (Sd1 operator) results

in another shear in the angular dimension, this time proportional to the distance d2.

Convolution by the visibility spectrum of the occluder spread the spectrum in the

spatial direction and, thus, the directional shear increases the angular bandwidth.

Finally, at R1, the angular bandwidth is inversely proportional to the size of the light

source and directly proportional to d1 and a combination of the visibility spectrum

of the occluder and d2. The spatial bandwidth is inversely proportional to the size of

the light source and directly proportional to the bandwidth of the visibility spectrum.

The importance of distinguishing between angular and spatial bandwidths can be

realized when a series of transport phenomena need to be performed in succession

where each phenomenon affects the spatial and angular bandwidths differently. For
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example, reflection off the diffuse receiver kills angular frequencies in pℓR1pΩx, Ωvq,
occlusion increases only spatial bandwidth, transport through free space increases

angular bandwidth alone, etc.

4.3 Application: Depth of field

The pinhole camera model produces images that are completely sharp because every

image element corresponds to a single ray in the scene. Real-life optical systems

such as photographic lenses, however, must collect enough light to accommodate the

sensitivity of the imaging system, and therefore combine light rays coming through

a finite-sized aperture. Focusing mechanisms are needed to choose the distance of

an “in-focus plane”, which will be sharply reproduced on the sensor, while objects

appear increasingly blurry as their distance to this plane increases. The visual effect

of focusing can be dramatic and is used extensively in photography and film, for

instance to separate a subject from the background.

Potmesil and Chakravarty proposed an algorithm [81] that generated a sharp image

using the pinhole model and then, in a postprocess, applied an adaptive blur de-

pending on the depth, at each pixel. The problem with this technique occurs when

defocused objects are present in the foreground, since the visibility at each pixel is

tested with only the ray through the optical center.

Cook et al. identified this problem, and proposed a solution [30] which integrates

contributions over the aperture. They traced a ray through the center, to first find

a point on the plane in focus. Then they averaged the contributions of several rays

from points distributed over the aperture to the point on the plane in focus. Although

the algorithm accounted for visibility correctly, it is extremely expensive since several
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Figure 4.3: Approximating the depth of field effect by applying a depth dependent
blur on a sharp image does not account for occlusion correctly. Two different focus
settings of the kitchen scene are shown (left and right columns). Top row: Results of
applying a depth dependent blur where the blurring kernel is varied according to the
circle of confusion at each pixel. Bottom row: Results of using a bilateral blurring
filter where the depths at each pixel are taken into account, in addition to the distance
from the central pixel of the kernel. (Thanks to Cyril Soler for providing the images.)
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rays need to be traced for each pixel.

Although the use of different camera models, in computer graphics, has been studied

for more than two decades [14, 60], the simulation of depth of field effects is rarely

used in practice because of its high cost: The lens aperture must be densely sampled

to produce a high-quality image. This is particularly frustrating because the defocus

produced by the lens is not increasing the visual complexity, but rather removing

detail!

In the remainder of this section, we study the problem from a signal processing

perspective, in the Fourier domain [99]. Then, we describe an algorithm that estimates

local image bandwidth. This allows us to reduce computation costs in two ways, by

adapting the sampling rates over the image and lens aperture domains. Finally, we

analyse the algorithm and compare it with the näıve algorithm for simulating the

depth of field effect.

4.3.1 Fourier depth of field

We present a theoretical analysis of the frequency content of the lightfield at the

sensor plane of a camera with a finite sized aperture. For effective exposition, we

present a flatland analysis where the lightfield is two dimensional: one spatial and

one angular dimension; in 3D space the corresponding quantities and transforms are

four dimensional.

Consider a point P in the scene (see Figure 4.5). We assume that we know the local

lightfield at P 5, ℓP px, vq, and its spectrum, pℓP pΩx, Ωvq. We describe the transport

of ℓP px, vq to ℓQpx, vq where Q is in the plane with the camera sensor and derive

5For brevity, we use “local lightfield at P” to mean “local lightfield in the neighbourhood of the
ray at P in a certain direction”
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Figure 4.4: Top left: The image sampling density predicts that the specular regions
of the trumpet, with high curvature and in focus need to be sampled most profusely in
the image. Top right The aperture density predicts that defocused regions need to be
sampled densely while the ball in focus requires very few samples over the aperture.
Bottom left: Adaptive bandwidth-based image samples. Bottom right: The final im-
age, reconstructed from scattered radiance estimates at image sample locations, using
Monte Carlo path tracing.
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Figure 4.5: Finite aperture (thin lens) camera model: Rays from points that lie in
front of (resp. behind) the plane in focus converge behind (resp. in front of) the
sensor plane, after passing through the lens, resulting in finite blurry regions on the
sensor called circles of confusion.

the transformations undergone by pℓP pΩx, Ωvq corresponding to this transport. The

complete process is illustrated in Figure 4.6.

Transport from P to the lens:

To begin with, the light from P travels in free space towards S. From earlier work [36],

we know that free-space traveling corresponds to a re-parameterization of the light-

field, i.e. a shear in the angular domain of its Fourier spectrum. Recall that this

transformation is expressed using the S operator (see Equation (4.19)):pℓP 1pΩx, Ωvq � pS � pℓP q pΩx, Ωvq. (4.23)

If the light from P passes by an occluder en route to L, this occluder also affects
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Figure 4.6: Flatland illustration of the transformations at different locations under-
gone by power spectra of local lightfields after last bounce in the scene as they travel
to the camera sensor.
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the lightfield. We express this by the operator C(see Equation (4.21)), which is a

convolution of the spectrum of the local lightfield with that of the occluder. If the

occluder were planar, the effect of C would be to inject spatial frequencies at the plane

of occlusion. For non planar occluders, this is a continuous process through the width

of the occluder.

The spectrum of the local lightfield at the lens after passing by a single occluder is

obtained by passing the spectrum at P through a simple composition of the above

linear operators:pℓLpΩx, Ωvq � pS C S � pℓP q pΩx, Ωvq (4.24)

In the general case, light travelling from P to L will encounter m different occluders,

and m � 1 shears (with different values for the shear parameter d). In this case we

can write pℓLpΩx, Ωvq aspℓLpΩx, Ωvq � pS pC Sqm � pℓP q pΩx, Ωvq (4.25)

Lens integration

The result of a finite-sized aperture is that, at each location Q on the sensor, there is

an integration of the cone of incident rays from the lens to the scene, defined by the

aperture a. We choose to model this integration as an operation over the lightfield at

the lens. This integration corresponds to a convolution in ray-space at L, and thus

the lightfield just after L is actually

ℓL�px, vq � ℓL�px, vq 
 a px, vq. (4.26)
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In this equation L� (resp. L�) represent the lightfield after (resp. before) the lens.

The equivalent transform in Fourier space is a product and can be written aspℓL�pΩx, Ωvq � pℓL�pΩx, Ωvq pa pΩx, Ωvq. (4.27)

To understand what pa pΩx, Ωvq looks like, observe that the set of rays over which the

lightfield is integrated, converge at a point Pf in the plane in focus (see Figure 4.5).

Therefore, at this point, the integration filter is a box in angles and a Dirac in space.

Its Fourier transform is thus a sinc in angle and a constant in space. At L, a px, vq
is the same function sheared from the distance between P and L. In 3D, the box is

circular, and its Fourier transform is consequently a Bessel function in angles.

As a consequence, the lightfield at L� (i.e. just after the lens) is bandlimited by the

spectrum of the aperture response function. Constricting the aperture of a camera

spreads the width of pa pΩx, Ωvq resulting in increased angular bandwidth at L�.

Finally, because we have already accounted for the integration at the lens, and because

the free-space traveling from the lens to the sensor is usually very small, we will neglect

this very last phase of the transport to Q.

Consequences on lens integration and image-space frequencies

When numerically performing the lightfield integration at the lens, it is preferable to

adapt the integration accuracy to the frequency content of the lightfield at L� so as

to ensure a desirable precision while keeping the computation cost as low as possible.

This information is available in pℓL�pΩx, Ωvq and will be used in the algorithm to

drive the lens sampling.

When computing an image, it is preferable to adapt the image sampling to the fre-
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quency content of the image and interpolate between samples, rather than explicitly

compute all pixels. At the sensor, the result of the integrated lightfield is the radi-

ance at point Q, corresponding to a pixel into the image. Seen from the lens, image

frequencies correspond to angular frequencies of the lightfield at L� at the center of

the lens (see Figure 4.5). In Fourier space, this means that we need to rate angular

frequencies in pℓL�pΩx, Ωvq integrated over the spatial domain.

Since view extraction is a projection onto the angular axis, a wider pa pΩx, Ωvq results

in higher frequencies in the image. Intuitively, reducing the aperture size causes more

regions of the image to be “in focus”. In the limit we obtain a pinhole camera which

retains all frequencies.

4.3.2 Adaptive depth of field rendering

We increase the efficiency with which depth of field effects can be simulated by adap-

tively varying the image space samples and the number of samples over the aperture

at each image sample. The former are obtained according to conservatively predicted

bandwidths over the camera sensor and, at each of these samples, the latter are

obtained by estimating the variance of the integrand over the aperture. The com-

putation of both, the bandwidth and the estimate of the variance, are enabled by

the propagation of local light field spectra after last bounce off surfaces in the scene

towards the camera sensor.

To adaptively distribute effort between sampling the image and aperture, we consider

the different transport phenomena between a visible object and the camera sensor.

We propagate the spectral information of local lightfields after last bounce off visible

objects. To do this, we sample the power spectrum of the lightfield and adjust these

samples during the different stages of transport to reflect the power spectrum density
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Figure 4.7: Top Left: Image density depicting local bandwidth at each pixel. Top
Right: Lens density indicating expected variance in the aperture integral. Bottom
Left: image samples at which incoming radiance is estimated; Bottom Right: recon-
structed image, using adaptive gaussian splatting. Blurry regions of the image are
sampled sparsely, but require profuse sampling of the lens.
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locally. Using a depth map to detect occlusion along the transport, we are able to

efficiently estimate frequency propagation towards the camera sensor.

Using the frequency information of the lightfields at the sensor, we extract a slice

to obtain an image space density that predicts bandwidth locally over the camera

sensor. This operation is performed for a subset of image pixels on a regular grid,

namely one every ten to one hundred pixels, and the frequency information is splatted

using a max across the image. This makes the whole process very fast. Slices of the

spectra at the plane of focus are used to estimate the variance of the integrand over

the aperture. We use the density yielded by this slice to derive the number of lens

samples for each pixel.

The next stage of our algorithm samples the image density and estimates the number

of lens samples required at each of those sample locations. Given this information,

we estimate incident radiance at those locations on the camera sensor using a Monte

Carlo path tracer. The final image is reconstructed from the scattered radiance

estimates. In contrast to images created by pinhole cameras, blurry images produced

by cameras with finite sized apertures pose a greater challenge for reconstruction

from sparse samples. This is because conventional “hacks” that splat upto material

boundaries are not usable when the boundaries are blurry. Occlusion effects caused by

drastic visibility changes over the aperture of the lens pose another frustrating hurdle

in simulating depth of field. Many approximations that blur an input image using

depth maps to decide the kernel size fail to handle the effect of occlusion correctly.

Contrarily, our algorithm takes into account the effect of occlusion correctly since we

add the effect of the aperture in a separate step.

To arrive at a simple algorithm, we conservatively assume that local lightfields at

surfaces after last bounces to the camera have infinite bandwidths in space although

bandlimited in angle by the spectra of the corresponding reflectance functions. We
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propagate these local lightfield spectra to the camera sensor by:

1. transporting to the plane in focus accounting for nearby occluders en route.

2. performing the lens convolution at the plane in focus. In the Fourier domain

this amounts to a multiplication of the local lightfield spectra with the spectrum

of the aperture response function.

3. transporting to the camera sensor accounting for nearby occluders en route.

In practice, we cast primary rays by through uniform samples on the the camera

sensor and perform the above steps from the points of first intersections back to the

sample locations.

Sampling local lightfield spectra

Let Q be a point on the sensor from where a primary ray r is cast and let P be

the point of intersection of this primary ray with the scene. We represent the power

spectrum of the local lightfield at P ,
���pℓppΩx, Ωvq��� , by a set of random variablestpωs

i, ω
a
iqu � P

� ���pℓppΩx, Ωvq��� 	 , 0   i   ns. (4.28)|ωs
i |   8 and |ωa

i |   Ωp are independent random variables representing the spatial and

angular components of a 2D frequency sample. Ωp is half the angular bandwidth of the

reflectance function at P. P is a projection of the four dimensional power spectrum

down to two dimensions, one in each, namely space and angle. The projection down

to two dimensions implies that we assume isotropy independently in space and in

angle which makes the computation, representation and propagation of the spectra
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Figure 4.8: Sampled power spectra are propagated from the scene to the camera sensor.
Transformations to the spectra are performed by independently modifying each sample.

practicable. In practice this assumption is reasonable since we are only interested in

maximum frequencies and not in accurate estimates of the spectra themselves.

Local lightfields in the scene can of course be arbitrarily complex, as can their cor-

responding 4D spectra. The existance of discontinuities in the lightfield implies that

the range of frequencies is infinite. Although, after reflection they are restricted in

the angular domain by the bandwidth of the reflectance function, they could contain

arbitrarily high spatial frequencies. This results in a very conservative prediction of

bandwidth at Q and thus we generate more samples than the optimal number.

Since we are only interested in predicting bandwidth, hence maximum frequency, we

project the 4D lightfield down to 2D (space and angle). Note that this would not be

a reasonable assumption if we were estimating spectra. Since we are not interested in

details such as spatial or angular anisotropy in the lightfields, we focus on 2D spectra
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with one dimension for angle and one for space. In the scene, the local spectra are

bounded in angle, by the bandwidth ρ of the BRDF. In space, the local lightfield

spectrum is unbounded a priori, because we have no information about shadow or

other boundaries and what spatial frequency conetent they inject.

Associated with each primary ray is a set of samples– ray r is initialized with tpωs
i, ω

a
iqu

from the power spectrum at P , as above. The range of useful frequencies in the image

plane is always bounded by the maximum number of samples Ns per square pixel in

image space, and by the maximum number of lens samples Nl, in angle, which are

user defined parameters. Also, in practice, anticipating the shear from the point to

the sensor, we can restrict the spatial bounds to be such that the resulting frequencies

stay below the maximum angular frequency at the sensor.

Propagation of the frequency content along the ray until Q requires that the samples

be appropriately updated at each step in the transport from P to Q. These updates

are simple and inexpensive to compute (see Figure 4.8).

Propagating local lightfield spectra

Transport through free space shears the power spectrum along the angular direction

proportional to the distance transported. Starting from the original samples, obtain-

ing samples that are distributed according to the sheared distribution involves simply

shifting each of the samples in the angular dimension. That is, each sample pωs
i, ω

a
iq

is updated to be pωs
i , ω

a
i � dωs

i q as a result of the free space transport by a distance

d.

Occlusion involves a convolution of the spectrum with the local lightfield by the spec-

trum of the occluder. Random variables representing the spectra of the lightfield and

the occluder when added are representatives of the convolution of the two distribu-
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Figure 4.9: A depth map of the scene is used to build the lists of occluders, along with
their distances, for each primary ray. P is the point of intersection of the primary
ray through pixel p and the scene. This defines the double cone where a ray from the
lens can hit the point P. The above figure illustrates the interval of depth values for a
neighboring pixel q within which a discontinuity is reported.

tions. Thus if we are able to draw samples tpνs
i, ν

a
iqu, 0   i   ns from an occluder’s

spectrum then we can simply update our samples pωs
i, ω

a
iq to be pωs

i � νs
i , ω

a
i � νa

i q.
Occlusion is a transport process that injects high spatial frequencies at multiple points

along the transport towards the sensor. These spatial frequencies are spread along the

angular dimension due to the transport through free space. Given these points and

some approximate occluder spectra at each of those points, we can use the algorithm

shown in Figure 4.8 to update the frequency samples appropriately

For each ray r we use the depth map to build a list of occluders and the points along

the ray the occlusions occur. To achieve this, we search the depth map for discon-

tinuities and splat these discontinuities in an occlusion buffer. Each discontinuity is

splatted to influence a region as large as its circle of confusion. Given a pixel p and a

pixel q in its neighborhood, the test to determine if q corresponds to a discontinuity

where occlusion needs to be accounted for is illustrated in Figure 4.9.
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At each occlusion point, the power spectrum of the occluder is assumed to be a Dirac

in angle and proportional to 1{ωx in space. This conservative choice is due to the

fact that visibility functions contain zero-order discontinuities and thus produce a

spectrum with first-order fall-off. The effect of this is seen in the regions surrounding

the foreground cubes in Figure 4.11 where the predicted effect of occlusion is more

conservative than its measured counterpart. While the method works well for conser-

vative estimates, better representations might be required if specifics of the occluder

are of interest (see Section 4.4).

The effect of a finite aperture is to cut off high angular frequencies at the plane in

focus. Updating samples to represent the result of applying this operator involves

rejecting angular frequencies with a probability defined by the shape of the aperture

power spectrum. Although this will increase the variance of the estimate, it is rea-

sonable since we are interested in information about maximum frequencies and not

complete spectra.

Bandwidth, variance and reconstruction

Sampling the image: To obtain image space samples, the first step is to conserva-

tively estimate bandwidth over the camera sensor using the incoming local lightfield

spectral information. That is, we project the samples onto the angular axis (view

extraction) and compute the highest angular frequency in the local neighborhood of

each pixel. In practice, to decrease sensitivity to outliers, we use the 98th percentile of

energy ξs as a representative of the maximum value at each point s P r0,W q� r0, Hq.
Here W and H are the width and height of the image respectively. The distribution

of ξs over the image serves as an indicator of regions that need to be sampled more

densely. Further, since ξs represents the maximum local frequency, we can estimate
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the optimal number of samples required locally (samples per square pixel) at s as

ρpsq � 4 ξ 2

s fh fv

W H
, (4.29)

where fh and fv are the horizontal and vertical fields of view. However, since we

predict bandwidth conservatively for increased reconstruction quality, the number

of samples over the image may be suboptimal. After computing the density, image

samples are generated according to ρpsq using a technique that produces samples

with desireable noise properties [77]. The total number of samples is dependant on

the integral of ρpsq over the image rather than a user defined parameter.

Sampling the aperture: Using Monte Carlo integration over a finite aperture, the

variance of the estimates depend on the variance of the integrand6. The goal is to

sample the aperture more profusely at image locations where the variance of the lens

integrand is high. We use the lightfield spectra at the plane of focus to estimate the

angular variance of the lightfield, since according to Parseval’s theorem, the variance

of a function is the integral of its power spectrum minus the DC term:

σ2 � »
yppΩvq2 � ypp0q2

In this equation, yp is the predicted spectrum at the plane in focus, projected onto the

angular axis. The central limit theorem predicts that the Monte Carlo estimates of

each of these integrals using uniform sampling over the aperture has itself a variance

of Opn�1

s q. While, in theory, stratification can improve the variance up to Opn�2

s q,
Mitchell showed [72] that in practice it is about Opn�1.5

s q for pixels with edge bound-

aries. Using this conservative estimate for stratified sampling of the aperture, we

6The variance of a function describes the rate at which the value of the function changes while
the variance of an estimator describes the error in the estimates.
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Figure 4.10: Comparison between measured and predicted image-space frequencies.
top: image space frequencies are measured in the reference image by extracting the
maximum 98 percentile (radially) in a 2D spatial spectrum computed using a 64� 64
windowed Fourier transform around the point. Inlays show the spectra and image-
space frequencies in pixel�1 at four points. bottom left: measured values across the
image. bottom right: using sampled spectra for conservative estimates. Conservative
estimates using sampling not only gives qualitatively the same profile of frequencies
but also produces a conservative estimate of the actual values. Note that in the domain
of low frequencies, the measured frequencies become higher than our estimate since
the measurement method can not produce very low frequencies because of the 64� 64
window resolution. In addition, the windowed fourier transform has an averaging
effect whereas we estimate a purely local frequency, hence the difference in blurriness
of two approaches.
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Figure 4.11: Comparison of variance measured over the rays converging to each pixel
of the cubes scene (left), with the variance predicted by our method (right). Both
images are displayed using the same scale. Our prediction is comparable to the actual
measured values both in its distribution over the image, but also qualitatively, except
in the foreground where it is a more conservative estimate. This makes it usable for
adaptive lens sampling.

determine the number of samples as

ns � k
�
σ2
	 1

1.5 (4.30)

The constant of proportionality, k can be used to control the expected error consis-

tently over the entire image.

Image reconstruction: We obtain image samples that respect this The image space

density obtained after frequency propagation directly provides an estimate of the

number of samples per square pixels required over the image. We reconstruct the

image using the radiance estimates at each of the image sample locations. The color

at each pixel is computed as a weighted average of a constant number of neighboring

samples. Since the samples are distributed according to a density, choosing a constant

number of neighboring samples involves adaptively varying the radius of contribution

of each pixel so that a constant number of samples (independent of the local density)

contribute to the color at each pixel. In practice, we use a gaussian weighting term

with a variance that is proportional to the square root of the local density.
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For each pixel

ppxq � 1°
i gipxq i̧

gipxqppxiq with gipxq � e
� |x�xi|2

σ2

i (4.31)

In practice, we first splat gaussians and gaussian weights for all image samples, and

divide the result by the total weight at each pixel. The splatting radii ri as well

as the constants σi for each sample are computed such that the number of samples

contributing to neighboring pixels is constant n throughout the image. This means

choosing:

ri � W
?
n

πfhξs
and σi � ri

ǫ
(4.32)

In this expression, fh is the horizontal image field of view, W is the width of the

image, and ǫ is the minimum weight splatted for each sample. In practice we take

n � 6 and ǫ � 0.1.

We emphasize that sparsely sampled images resulting from simulation of depth of

field cannot be splatted upto material or depth discontinuities (as is done for pinhole

camera simulation), due to the integral over the aperture. Blurred discontinuities in

the image need to be sampled adequately, which requires a systematic treatment of

occlusion and aperture effects.
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4.3.3 Validation and results

We compare our conservative predictions of the local image bandwidth and lens vari-

ance against experimental measurements. To verify our predictions of the image

density, at each pixel si (in the reference image) we compute a windowed Fast Fourier

Transform (FFT) with the window centered at si and record the 98th percentile. Fig-

ure 4.10 shows a comparison of such a measured 98th percentile image against our

image space sampling density. The measurement is not entirely local due to a funda-

mental property of the windowed FFT. Depending on the choice of window size the

measured frequencies are either heavily blurred (large window) or restricted heavily

in the range of measured frequencies (small window). To avoid border effects, the

measurements are limited to the interior part of the reference image. From the figure,

it is evident that our prediction both appears to qualitatively match the distribution

of measured frequency and is of the same order of magnitude. In fact, we obtain a

much more local prediction than observed with the windowed FFT.

To verify our estimates of the variation of the integrand over the aperture, we use

stratified samples to estimate and record the variance in the lens integrals at each

pixel. In Figure 4.11 we compare the predicted variance at each pixel using Equa-

tion (4.30) to the actual variance measured during Monte Carlo integration over the

aperture for the reference image. From the comparison we observe that, although our

predicted distribution resembles the measured variance, we predict higher frequencies

around the blurry cubes in the foreground since our prediction is conservative.

Computation times

The table in Figure 4.12 summaries computation cost for the various scenes and focus

settings with our algorithm. Kitchen 1 and 2 correspond to the kitchen scene with
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the plane in focus set on the foreground and background respectively. Clearly, the

accumulated cost of propogating, computing and splatting frequency information,

along with image reconstruction (using splatting) is quite negligible compared to the

cost of näıve stratified Monte Carlo integration over the aperture at all pixels (see

table in Fig. 4.13. This suggests that our adaptive algorithm significantly (at least

by an order of magnitude) increases the efficiency of synthesizing images with depth

of field effects. The shallower the depth of field, the blurrier the image; this is when

the adaptive algorithm provides maximum gain.

Scene Size Frequency Path Reconstr. Image space Primary
computn. tracing (seconds) samples rays
(seconds) (seconds)

Cubes 721� 589 45 3150 3 76 000 13 M

Snooker 904� 806 90 4 500 10 119 335 25M

Kitchen 1 897� 679 60 7401 8 867 000 113 M

Kitchen 2 897� 679 60 6849 3 2 000 000 144 M

Figure 4.12: Execution times for the different steps in our algorithm and number of
primary rays cast are shown for different scenes.

The number of image samples is indicative of the number of pixels where radiance

needs to be estimated. For images with larger regions in focus (large depth of field),

this number would be very close to the number of pixels in the image. In those regions,

the gain from using our algorithm is due to the extremely sparse lens sampling, again

implying that fewer radiance estimates are required. Note that focused images are

reconstructed faster, which is consistent since samples require smaller splatting radii.

We use the total number of primary rays cast to compare our technique with the

non-adaptive stratified sampling technique. By distributing the total number of pri-

mary rays cast in our method amongst all pixels for the stratified sampling method,

we generate images of similar computational cost. The table shown (see Fig. 4.13)

shows the number of rays cast for similar image quality as those images used for

measurements in Fig. 4.12. We also tabulate the theoretical speedup by dividing the
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number of primary rays in the reference technique by the number of primary rays

cast by our algorithm.

Scene Number of Number of . Speedup
lens rays/pixel primary rays due to our method

Cubes 450 191M 14.7

Snooker 600 437M 17.3

Kitchen 1 1100 2 719M 24.0

Kitchen 2 1100 2 719M 18.9

Figure 4.13: Number of rays cast using stratified sampling Monte Carlo integration for
similar appearance quality as for the images tabulated in Fig.4.12. The last column
shows the speedup gained by using our method, obtained by dividing the middle column
by the last column in Fig.4.12.

Examples

We present, in Figure 4.14, example renderings with direct illumination of a scene lit

by area and point light sources. The frequency maps conservatively capture the vari-

ous effects which can produce high image-space and lens frequencies such as focused

regions for the former, and highly curved specular regions for the later. The image

samples as well as the lens samples are automatically adapted so as to produce an

image of constant quality. The image resolution is 897� 679, and we used maximum

values of Ns � 4 image samples per square pixel and Nl � 2500 lens samples per

pixel. The total number of primary rays is 44, 000, 000 and 77, 000, 000 in the two

settings respectively.

We compare our results to what we can obtain using a stratified lens sampling (with

image space stratification for antialiasing) for the same computation cost. We do this

by setting the number of lens samples so that the total number of primary rays is the

same as with our method samples (70 and 129 for the foreground and background

focus settings respectively). In both cases our algorithm results in images that are less

noisy. Our algorithm performs particularly well in regions of high angular variance
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such as the handles of the cabinet. Despite the total cost being the same, the reason

that the näıve method does not produce regions with less noise, is that many regions

of the image are wastefully oversampled because of its non-adaptive nature.

Discussion of the various approximations

Ignoring phase information of the local lightfield spectra, as we do in our model, im-

plies approximations in the computation of convolutions between spectra. In practice,

this means that we neglect the relative positions of multiple obstacles close to the same

ray. The convolution is then over-estimated, and tends to produce higher frequencies

when multiple obstacles lie between the eye and the scene. This approximation is

therefore conservative with respect to image-space frequency and lens variance.

By reducing dimensionality from 4D spectra to 2D spectra, we implicitly make as-

sumptions about the isotropy in the spatial and angular domains independently. In

practice, since we only use the spectra to conservatively predict bandwidth, we do

not observe artifacts that could be due to this projection.

Our choice of using conservative spectra such as maximum spatial frequencies when

a textured surface is detected and angular frequencies equal to the bandwidth of

the BRDF on all surfaces results in suboptimal sampling. Thus we are not able to

take special advantage of knowing the local bandwidth of a region with texture. In

addition we do not take illumination into account while sampling.
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(a) Our method (foreground focus) (b) Constant lens sampling (same cost)

(e) Image−space frequency map(d) Lens space frequency map

and number of lens samples

(c) Comparison with constant lens 

sampling at equivalent cost

(f) Our method (backgound focus) (g) Constant lens sampling (same cost)

  65

2500

1756

 152

   4

Figure 4.14: Example of renderings using our method, with two settings of the focus
plane (a) and (f). In both cases, we compare our result to sampling the lens constantly
throughout the image and by shooting the same number of total rays than in our
method. The images obtained are much more blurry in regions of high variance, such
as door handles which are highly curved very specular materials. In (c) we zoom on
specific image locations and compare our method (at left) to the uniform constant
sampling (at right). In (d) and (e) we show the lens and image-space frequency maps
(logarithmic tone mapping) that we used to sample the lens and image, as well as the
number of lens samples used at some locations.
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4.4 Visibility spectra

The visibility function V px, vq is defined with respect to a virtual plane, which makes

it a directional function. In other words, an occluder’s visibility function is different

for central rays with different directions. Consider a planar occluder in the intervalra, bs on the virtual plane that defines V px, vq. Since V px, vq � 0, �v �x P ra, bs, the

visibility spectrum is a Dirac delta in the angular domain and a sinc along the spatial

dimension, corresponding to the Fourier transform of a pulse of width b� a. For non

planar occluders, the visibility function, and hence the spectra, have information in

the spatial and angular dimensions. We limit ourselves to studying opaque occluders.

That is, occluders with binary visibility functions.

The goal of this section is to describe representations for visibility spectra that we

experimented with. and to study the reason for their inapplicability in a practical

setting. We present an analytic and a numerical approximation for precomputation

and storage of spectra.

4.4.1 Approximate analytical representation

Along a given ray direction, let us consider a non-planar occluder as being composed

of infinitesemal transverse slices, each of which can be considered a planar occluder.

Each planar occluder is a square pulse which has a 0 value representing points inside or

on the occluder7. Thus the occluder can be approximated by a sequence of N square

pulses. We are interested in defining the visibility function along the given direction

as N Ñ8. We present a study of convex occluders without holes, in flatland.

Let V px, θq be the visibility function defined at the virtual plane P that is at the

7This corresponds to negative logic, where a low signal indicates the pulse—in this case a 0
indicates occlusion.
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Figure 4.15: Left: A 2D occluder approximated by a number of slices transverse to
the ray under consideration. Middle: In the limit, each slice dt at distance t from P

contributes to the visibility V px, θq. Right: The slice dt can be considered as a planar
occluder, causing the visibility at the plane to be a pulse.

farthest plane transverse to the ray direction that the occluder lies in (see Figure 4.15).

Let the depth interval spanned by the occluder be r0, ss where a depth of s corresponds

to the plane P . Consider the single slice of the occluder at a distance t from P . Let

the interval spanned by this slice of the occluder be rγ2ptq, γ1ptqs. We represent

the occlusion due to this slice by a square pulse
γ1ptq�
γ2ptqpxq. If this were the only slice

approximating the occluder, the lightfield at P can be written as

V px, θq � γ1ptq�
γ2ptqpx� tθq, (4.33)

where the reparameterization to x � tθ accounts for the transport from the slice to

P . Approximating the occluder with N planar occluders, we can express V px, θq,
approximately, as the product of the pulses at each of N slices.

V px, θq � N¹
i�0

��γ1ptiq�
γ2ptiqpx� tiθq�� . (4.34)

γ2ptqand γ1ptq characterise the left and right boundaries of the occluder respectively

by defining the variation (with t) of the start and end of the pulse at each slice.
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Using a common engineering trick that uses logarithms to replace product with sums,

and taking the limit N Ñ8, we get

V px, θq � exp

�� s»
0

ln

��γ1ptq�
γ2ptqpx� tθq�
dt

�� . (4.35)

Since the term inside the logarithm could go to zero, we approximate the occlusion

due to a slice by a combination of exponential terms.

Approximating the Square Pulse

The square pulse
γ1ptq�
γ2ptqpxq can be written as

γ1ptq�
γ2ptqpxq � 1� Hpx� γ1ptqq � Hpx� γ2ptqq, (4.36)

where Hpxq is the Heaviside step8 function. The Heaviside step function can be

approximated by

Hpx� aq � exp r px� aq α s
1� exp r px� aq α s , (4.37)

where α is a parameter that can be used to control the approximation. The accuracy

of the approximation increases as α is increased. Under this approximation, and the

approximation

1� exp r A�B s � exp r B sp1� exp r A sqp1� exp r B sq � 1� exp r A�B sp1� exp r A sqp1� exp r B sq , (4.38)

8The heaviside step function is the antiderivative of the Dirac delta
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Equation (4.36) becomes

γ1ptq�
γ2ptqpxq � 1� exp r ppx� γ2ptqq � px� γ1ptqqqα sp1� exp r px� γ2ptqqα sq p1� exp r px� γ1ptqqα sq .

The windowed visibility spectrum

Substituting the expression for the approximation of the square pulse into Equa-

tion (4.35), we obtain

V px, θq � exp

�� s»
0

lnp1� exp r pp2x� 2tθ � γ2ptq � γ1ptqqαq sq dt

��� exp

�� � s»
0

lnp1� exp r ppx� tθ � γ1ptqqαq sq dt

��� exp

�� � s»
0

lnp1� exp r ppx� tθ � γ2ptqqαq sq dt

�� . (4.39)

Observe that the functionals defined by the exponential terms in Equation (4.39) take

a common form:

ψ
a,b,c

ς
px, s, θq � exp

�� a s»
0

lnp1 � exp r ppbx� ςpt, θqqcq sq dt.

�� (4.40)

We rewrite the visibility as a product of three functionals Ψ1, Ψ2 and Ψ3:

V px, θq � Ψ1 Ψ2 Ψ3� ψ
1,2,α

γ1ptq�γ2ptq�2tθ
px, s, θq ψ

�1,1,α

γ1ptq�tθ
px, s, θq ψ

�1,1,α

γ2ptq�tθ
px, s, θq. (4.41)
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Figure 4.16: From left to right: Scene containing a set of cubes as occluders; the
binary visibility function (vertical viewing direction); the visibility spectrum (vertical
viewing direction); 2D spectra reduced to 1D spectra (rows) along multiple directions,
by integrating along circles about the central p0, 0q frequency.

The windowed Fourier transform of the visibility field is thereforepV pΩx,Ωθq � pF � βV q px, θq� pβpΩx,Ωθq 
 pΨ1 
 pΨ2 
 pΨ3.

(4.42)

Discussion

One simple algorithm to account for non-planar occluders would be to consider them

as a set of slices and treating each as an occluder. However, simply performing a

series of shears and convolutions to approximate the visibility spectrum results in an

algorithm that performs as many convolutions as there are slices.

The expression obtained for the visibility function (see Equation (4.39)) consists of a

product of three terms, irrespective of the number of slices used in the approximation.

Choosing a set of slices to represent the occluder amounts to sampling the integrals in

the exponents of the equation. While the accuracy of the visibility function increases

when many slices are chosen, the expression for the visibility spectrum consists of

four convolutions.
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Figure 4.17: Binary visibility function of a set of occluders (left) in a given direction,
along with its Fourier power spectrum (right).

The difficulties of using this representation in a practical algorithm are: (1) the oc-

cluder must not have holes; (2) obtaining γ1ptq and γ2ptq is not practical for occluders

that are commonly modeled as meshes; (3) γ1ptq and γ2ptq are directional functions.

4.4.2 Numerical representation for visibility spectra

Given unlimited memory, we could imagine storing the Fourier transforms of binary

snapshots of the occluder from every view. Each snapshot is a white image with

the occluder rendered in black. In such a setting, the visibility spectrum along the

direction of a given central ray would simply be a lookup into the stored spectra.

Obviously, for the method to be practical the number of views must be limited and

the spectra for arbitrary viewing directions obtained using interpolation. In addition,

rather than storing the results of the Fourier transforms of the snapshot, only the

resulting power spectra can be stored. Associated with each occluder, we can imagine
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Figure 4.18: Approximate power spectra for the visibility function shown in Fig-
ure 4.17 computed by averaging randomly centred, equally wide, windowed Fourier
transforms of the visibility function. The spectra shown were computed using 64,
144, 256 and 900 windowed Fourier transforms from left to right, respectively. The
windowing function chosen was a cosine to the fourth power.

storing a sequence of power spectra corresponding to different central ray directions.

To further compact the representation, for each view, we can integrate along circles

about the origin in the Fourier domain. This yields a 1D vector corresponding to each

snapshot. Thus, associated with each occluder is an image whose rows correspond to

1D visibility spectra obtained along different directions (see Figure 4.16).

Experiments with this representation reveal two fundamental limitations that can

both be attributed to the lack of phase information: (1) this representation is unable

to distinguish between the visibility spectra along two parallel rays at different dis-

tances from the occluder. (2) It is not obvious how correlation between the spectra

of multiple obstacles must be accounted for.

The problem of determining “closeness”

Clearly any ray that passes at a finite distance past an occluder picks up some frequen-

cies depending on the visibility function along its direction. However, in a practical

setting, rays that are not “close” to an occluder can be reasonably assumed to remain

unaffected. The use of numerically computed spectra without phase information,

does not distinguish between rays at different distances from the occluder if they are
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Figure 4.19: The effect of increasing window size on visibility spectra computed by
averaging 100 randomly centred, windowed spectra. The window sizes, from left to
right, were 20, 50, 100 and 200 pixels respectively for a 514� 514 image. Resolution
in the frequency domain increases as the window size is increased. Certainty in the
frequency predictions is necessarily forgone while trying to gain resolution in space.

parallel. This inherent deficiency in the method demands an auxiliary mechanism

that artificially accounts for the distance to the occluder. This mechanism must, in

addition, determine when a ray is close enough to the occluder that the convolution

with the visibility spectrum must be performed.

One possible solution is to compute and store the average power spectrum, for each

direction, from several windowed Fourier transforms where the windows centres are

uniformly randomly distributed (see Figure 4.18). The resulting average 2D visibility

spectrum can be collapsed to 1D as before, for efficient storage. The advantage of

this method is that the stored spectrum corresponds to the average result of a ray

that passes by occluders at a distance corresponding to the size of the window used

in the precomputation. Since averaging power spectra disregards phase, this is only

an approximation.

A hierarchy of average spectra can be computed where each level in the hierarchy

stores spectra computed with a wider window than the previous. A spectrum can

be chosen from this hierarchy depending on the distance of the central ray for which

the visibility spectrum query is made. The effect of window size on the averaged

spectrum is shown in Figure 4.19.
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The problem of scale and correlation

Consider a ray that passes by two obstacles, each with their own precomputed direc-

tional visibility spectra. Accounting for the two obstacles individually and performing

two independant convolutions of the visibility power spectra with the lightfield spec-

tra completely disregards correlation between the two obstacles. One possible remedy

would be to hierarchically compute spectra, by clustering objects together. This raises

more questions like how the level in the hierarchy of spectra must be chosen for a

particular ray, how the clustering must be done, etc.
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Chapter 5

Statistical assessment of estimators

In a valid deductive argument the premises logically entail the conclusion, where such

entailment means that the truth of the premises provides a guarantee of the truth of

the conclusion. An inductive logic is a system of reasoning that extends deductive

logic to less-than-certain inferences. In a good inductive argument or assertion, the

premises should provide some degree of support for the conclusion, where such support

means that the truth of the premises indicates with some degree of strength that the

conclusion is true.

In the context of Monte Carlo image synthesis one is often faced with the task of sup-

porting an assertion that a given algorithm is superior in that it can produce images

with the same first-order statistics (generally the expected value at each pixel), while

exhibiting different second-order statistics (generally a reduction in variance). For

example, algorithms for importance sampling or stratified sampling, when properly

implemented, will exhibit precisely these characteristics; that is, reducing variance

while leaving the mean intact. On the other hand, biased estimators are sometimes

specifically constructed, primarily to reduce variance in the estimate or to simplify the
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algorithm. Such results are commonly demonstrated with comparison images show-

ing a reduction in the “graininess” of the image and/or a reduction in running time

by virtue of the proposed algorithm. Plots of the first- and second- order statistics of

the estimators are used to help in the assessment.

Novel rendering algorithms are often proposed in order to compute a given image

faster or to allow effective trade-offs between speed and accuracy. In either case, the

question naturally arises as to how one can demonstrate that a proposed algorithm

meets the stated criteria. Presently it is widespread practice within the rendering

community to employ a combination of objective and subjective criteria; running time

is an objective criterion that is easy to measure and compare, while image quality,

which presents a much greater challenge, generally rests upon subjective criteria such

as visual inspection of two images or variance-plots.

There are numerous disadvantages to relying on subjective assessments such as visual

comparison of images or plots: 1) they are only weakly quantitative, since comparisons

are usually binary 2) the absolute variance is not a useful indicator of the quality of

the estimator unless some assertions can be made about the mean 3) subtle errors

can go undetected, and 4) the comparison cannot be automated.

In this chapter, we explore the use of a well known set of tools in statistics to objec-

tively assess Monte Carlo estimators in image synthesis using simple criteria based

on first and second order statistics. In addition we demonstrate the use of these tools

for verifying sampling algorithms and detecting errors.
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5.1 Statistical tests of hypotheses

Statistical inference is in the nature of inductive logic, aiming to make generalizations

from particular observations. For the logic of inductive arguments to be of any value,

the measure of support it articulates must satisfy the Criteron of Adequacy (CoA) : As

evidence accumulates, the degree to which the collection of true evidence statements

comes to support a hypothesis, as measured by the logic, should tend to indicate

that false hypotheses are probably false and that true hypotheses are probably true.

Methods of statistical inference are prone to controversies since they inherently involve

generalization from observed data. While several methods exist for inference, their

efficacies may only be meaningfully ranked in the context of a specific application.

Once a hypothesis has been formed, one often is interested in testing it against the

observed data. While testing hypotheses may be more useful in cases where the

hypotheses have been framed based on heuristics, the tests might also be used to

compare different techniques of inference for a given application. There are numerous

types of statistical tests, associated with different forms of application problems,

such as significance tests that determine whether a hypothesis ought to be rejected,

parametric tests to verify hypotheses concerning parameter values, goodness of fit

tests to determine whether an observed distribution is compatible with a theoretical

one, etc. Statistically significant results are those that are unlikely to have occurred

by chance. Significance Tests are procedures for establishing the probability of an

outcome, on a null hypothesis of no effect or relationship.
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5.1.1 Brief history

In contrast to the Bayesian approach to inductive inference which is based on the

inverse probability Pr pH|xq of a hypothesis H given the data x, Fisher urged the

adoption of direct probability Pr px|Hq in an attempt to argue “from observations

to hypotheses” [40]. If the data deviated from what was expected by more more

than a specified criterion, the level of significance, the data was used to reject the

null hypothesis. However, Fisher’s significance tests are difficult to frame in general

since often there exist no natural or well-defined complements to null hypotheses

eg. H0 : The sample was drawn from the unit normal distribution.

The terminology Hypothesis Testing was made popular by Neyman and Pearson [49,

50] who formulated two competing hypotheses called the null hypothesis (H
0
) and the

alternative hypothesis (H
1
). Given a sample 1 from an arbitrary population, the goal

of hypothesis testing is to test H
0

against H
1

according to the given data. Although

the Neyman-Pearson theory was criticised [41] for only being suited to situations in

which repeated random sampling has meaning, it fits well in the context of assessing

MC estimators used in image synthesis. While Fisher’s view of inductive inference

focused on the rejection of the null hypothesis, the Neyman-Pearson theory sought

to establish rules for making decisions between two hypotheses. This fundamental

difference is exploited in all the tests that we present later in this chapter. The

tests described in this chapter are results in statistical inference that can be found

in standard textbooks [43, 86] that have been adapted for assessing Monte Carlo

estimators in image synthesis.

1We remind the reader that, in this chapter, we shall use the term sample as it is used in statistics;
that is, to refer to a set of observations of a population, not a single observation, as it is commonly
used in the graphics literature.
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5.1.2 Theory

Definition 5.1. Let S denote the sample space of outcomes of an experiment

and x be an arbitrary element of S. Let H
0

be a hypothesis which specifies, partly or

completely, the probability measure on the Borel field B of sets in S. The problem of

hypothesis testing is to decide, based on an observed x, whether H
0

is true or not.

In practice, the points of S will be regarded as the realization of a random variable

(r.v.) X such that Pr pA|Hq � Pr pX P A|Hq for A � S. We may then write a

function T defined over S as a function T pXq of X with the value T pxq when X � x.

Then T pXq ¡ λ � x : T pxq ¡ λ and Pr ptx : T pxq ¡ λuq � Pr pT pXq ¡ λq.
Let X be a r.v. dependent on some observed data. If the probability distribution of

X is completely specified by the null hypothesis, the corresponding null hypothesis

is referred to as a simple hypothesis. In cases where the null hypothesis does not

completely specify the probability distribution but, instead, specifies the distribution

as particular functions of a set of parameters, the hypothesis is said to be of type

composite.

Regardless of the type of the hypothesis and the procedure used to test the null

hypothesis, the testing process involves two types of errors: (1) that of rejecting H
0

when it is, in fact, true and (2) that of not rejectingH
0
when an alternative hypothesis

is true. These are called errors of the first and second kinds or Type I and Type II

errors respectively.

We only consider nonrandomized test procedures; that is, one where the sample space

is divided into two regions W and S �W and H
0

is rejected if x P W . Here x is an

observed outcome and W is called the critical region.
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For simple hypotheses the probability, α, of errors of the first kind is the probability

measure of the set W under the hypothesis H
0
,

Pr pW |H
0
q � α. (5.1)

α is also called the level of significance with which the null hypothesis was accepted.

The probability βphq, or error of the second kind for a particular alternative h P H
of the set of alternative hypotheses H , is

Pr pS �W |hq � βphq, (5.2)

and γphq � 1� βphq defined over H is called the power function.

For a composite null hypothesis H
0
, α is defined as

Pr pW |H
0
q � sup

hPH
0

Pr pW |hq . (5.3)

Neyman and Pearson [49, 50] presented one of the earliest formal theories leading to

the clear understanding of problems related to hypothesis testing. They posed the

problem as follows: Given a level of significance, we would like to reduce errors of the

second kind to as low as possible, or maintain as large a power function as possible.

Lemma 5.2. Let f0, f1, ,,, be integrable functions over space S with respect to a

measure v and let W be any region such that»
W

fi dv � ci pgivenq, i � 1, 2, ... (5.4)

Further, let there exist constants k1, k2, ... such that for the region W0, within which
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f0 ¥ k1f1 � k2f2 � ... and outside which f0 ¤ k1f1 � k2f2 � ..., the conditions in

Equation (5.4) are satisfied. Then»
W0

f0 dv ¥ »
W

f0 dv (5.5)

Consider the case where a simple null hypothesis H
0

is to be tested, against a simple

alternate hypothesis H
1
. Let Pr px|H

0
q and Pr px|H

1
q be the probability densities at

x under H
0

and H
1

respectively with respect to a σ-finite measure v. The problem is

that of determining a critical region such that»
W

Pr px|H
0
q dv � α (assigned value)»

W

Pr px|H
1
q dv is maximum

(5.6)

(5.7)

For solving this problem, we use Lemma 5.2. Choosing f0 � Pr px|H
1
q and f1 �

Pr px|H
0
q, the optimum region W is defined bytx : Pr px|H

1
q ¥ k Pr px|H

0
qu (5.8)

provided there exists a k such that Equation (5.6) is satisfied. Observe that using the

r.v. X, the test in Equation (5.8) can be written as

T � Pr pX|H
1
q

Pr pX|H
0
q ¥ k (5.9)

If the distribution of T with respect to H
0

is continuous, then there exists a k such

that Pr pT ¥ k|H
0
q for any assigned α. In this case, T is dependent on the simple
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alternate hypothesis H
1
. T is called the test statistic and needs to be derived for

the hypotheses being tested against. In Section 5.2 we present some standard test

statistics and how they could be used in our context.

One-tailed Tests : Tests in which the critical region lies at either the left or right of

the distribution ppxq followed by the test statistic. Given the max probability of false

rejection α, the two critical values are obtained as P�1pαq and P�1p1�αq which are

the the inverse cumulative distribution evaluated at α and 1 � α respectively. The

null hypothesis is rejected if the test statistic that is computed from the data lies

below or above the critical values respectively. The appropriate alternate hypothesis

may be accepted.

Two-tailed Tests : Tests in which the critical region is equally distributed at both

ends of the distribution ppxq followed by the test statistic. Given the max probability

of false rejection α, two critical values are obtained as P�1pα{2q and P�1p1 � α{2q.
The null hypothesis is rejected if the test statistic that is computed from the data

does not lie between these two critical values.

5.1.3 Procedure summary

The general algorithm for testing hypotheses proceeds in a number of steps. The

first step involves formalization of the null hypothesis. After stating the hypothesis

in a way that allows the probabilities of samples to be calculated assuming that the

hypothesis is true, the next step is to set up a statistical test that will aid in likely

reject the null hypothesis in favour of the alternative hypothesis. The test statistic is a

prescription according to which a number is computed from a given sample— that is,

a real-valued function of the sample. Sometimes the test statistic could be a function

of two samples, and in such cases the test is called a two sample test. Given a sample,
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Figure 5.1: Overview of the general procedure for hypothesis tests presented in this
chapter.

its associated value of the test statistic is used to decide between accepting the null

and the alternative hypotheses. Thus there exist probabilities associated with false

rejection (Type I) and false acceptance (Type II) errors which are typically denoted

by α and β respectively. An acceptable α along with the test statistic defines a region

of the parent distribution where H0 is rejected in favor of H1; this region is called the

critical region. α defines the maximum probability of the test statistic falling in the

critical region despite the null hypothesis being true and corresponds to the fraction

of the time that the null hypothesis is erroneously rejected. If the critical region is

chosen to lie either completely at the left tail of the parent distribution or completely

at the right tail, the test is called a one-tailed test or assymetrical or one-sided test.

If the critical region is chosen to equally cover the left and right tails, the test is

called a two-tailed test or symetrical or two-sided test. α is an input parameter and

is typically chosen to be low (see Figure 5.1).

With the hypothesis and test statistic set up and having identified the critical region,

the data is examined for evidence to reject the null hypothesis. The test statistic is

calculated for the given sample data and tested to check if it lies in the critical region.
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If this is the case, then the conclusion is that either the null hypothesis is incorrect

or an erroneous result of probability less than α has occurred and in either case we

accept the alternate hypothesis. Parametric hypothesis tests that hypothesize about

parameters of the parent distribution, such as mean and variance, are intimately tied

to the distribution of the population under study and most of the existing techniques

only apply to distributions of a restricted type. In fact, the vast majority of the

existing theory has been developed for populations with normal distributions.

5.2 Hypothesis Tests for mean and variance

5.2.1 One Sample Mean Test

The goal of this test is to assert with some confidence that the mean of the distribution

from which a sample y of size n is drawn, is a specific value µ0. The test assumes

that the distribution from which the sample is drawn is normal but does not make

any assumption about its true variance. The null and alternative hypotheses for this

test are

H0 : y � µ0,

H1 : y � µ0,

H�
1

: y ¡ µ0,

H�
1

: y   µ0.

The test statistic is

tν � y � µ0

s{?n (5.10)
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which follows the Student’s t-distribution with ν � n � 1 degrees of freedom. The

null hypothesis is tested against the first alternative hypothesis with a two-tailed

test and against the other two alternative hypotheses with the appropriate one-tailed

tests. If the data do not provide enough evidence, at the given α probability of false

rejection, to reject the null hypothesis in favour of any of the alternate hypotheses

then we accept that the mean of the sample is not significantly different from µ0.

5.2.2 One Sample Variance Test

This test allows the variance of the distribution from which a sample y of size n is

drawn, to be compared with some confidence against a specific value σ2

0
. The test

assumes that the distribution from which the sample is drawn is normal but does not

make any assumption about its true mean. The null and alternative hypotheses for

this test are

H0 : σ2 � σ2

0
,

H�
1

: σ2 ¡ σ2

0
,

H�
1

: σ2   σ2

0
.

The distribution of observed variances s2 for samples drawn from some numerical

population follows the chi-square distribution, which we use as the test statistic in

this case. The test statistic is

χ2

ν � νs2

σ2
0

(5.11)

where again the degrees of freedom ν � n � 1. An interesting property of this

distribution is that the s2 values average σ2, the actual (usually unknown) variance

of the distribution. Two one-tailed tests are performed to test if the data provides
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enough evidence to reject the null hypothesis in favour of either of the alternative

hypotheses.

5.2.3 Comparing Means of Two Samples

This test compares the means of two distributions, each of which is represented by one

sample, to check for equality without making any assumptions about the variances

of the distributions. If the two samples are y1 and y2 of sizes n1 and n2 respectively,

the null and alternative hypotheses are

H0 : y1 � y2,

H1 : y1 � y2.

The test statistic is

Tν � y1 � y1b
s2

1
{n1 � s2

2
{n2

(5.12)

which follows the Student’s t-distribution with

ν � ps2

1
{n1 � s2

2
{n2q2ps2

1
{n1q2{pn1 � 1q � ps2

2
{n2q2{pn2 � 1q

degrees of freedom. A two-tailed test is used to determine whether the samples provide

enough evidence to reject the null hypothesis in favour of the alternative hypothesis.

5.2.4 Comparing Variances of Two Samples

To compare the variances of two distributions, each of which is represented by one

sample, we use the standard F-test. If the two samples are y1 and y2 of sizes n1 and
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n2 respectively, the null and alternative hypotheses are

H0 : s2

1
� s2

2
,

H�
1

: s2

1
¡ s2

2
,

H�
1

: s2

1
  s2

2
.

The test statistic is

Fν1,ν2
� s2

1

s2

2

(5.13)

which follows the F-distribution with pν1 � n1 � 1, ν2 � n2 � 1q degrees of freedom.

The null hypothesis is tested against the alternative hypotheses using two one-tailed

tests.

5.3 Assessing Monte Carlo estimators

While completely automatic ranking of estimators is an enormous challenge, hypoth-

esis tests may be used provide objective answers to several very basic queries about

r.v.’s. If X and Y are r.v.’s, we answer queries such as “Is the mean value of X

equal to µ0?” or “Is the mean value of X equal to the mean value of Y ?” or “Is the

variance of X less than that of Y ?”. The structure of such queries is to first pose a

null hypothesis, such as E pXq � E pY q and competing alternative hypotheses such as

E pXq � E pY q, E pXq   E pY q and E pXq   E pY q. Then, solely based on samples

drawn from the parent distributions of X and Y , the null hypothesis is either accepted

or rejected with a given level of confidence. The null hypothesis is only accepted if the

data do not provide enough evidence to reject it. If the null hypothesis is rejected,

further tests are made to decide which alternative hypothesis may be accepted.
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Primary estimator Secondary estimator

Figure 5.2: Comparing four different Monte Carlo estimators for computing irradi-
ance. The histograms show frequency vs irradiance for a large number of estimates.
The distribution characteristic of the secondary estimators is observed to be close to
normal with the same mean but different variances depending on the sampling scheme.
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Previous work in computer graphics has drawn upon similar tools, such as the Chi-

Square and Student-t distributions, although they have focused on applications in-

volving the problem of estimating true variance using sample variance for the purpose

of stochastic anti-aliasing [34, 66, 84]. Here, however, we present a variety of signifi-

cance tests for assessing both the mean and variance of the r.v.’s resulting from Monte

Carlo estimations for the purpose of verifying that they are indeed estimating what

they are intended to estimate; that is, we are not interested in directly assessing the

accuracy of an approximation, rather the correctness and efficiency of the estimator.

Two important hurdles in trying to apply statistical tests to populations defined as

the outputs of MC estimators are : (1) dealing with estimators whose estimates are

not distributed normally and (2) formulating the null hypothesis and setting up the

statistical tests

By the central limit theorem, the distribution of the estimated means of samples of

MC estimator E rapidly approaches a normal distribution as the size of each sample

is increased. To overcome the first of the two hurdles, rather than assess the primary

estimator, we simply use distributions obtained from secondary estimators Es (see

Figure 5.2) in our assessment.

To overcome the latter hurdle, we first need to define the goal of the test. In the

context of MC estimators two parameters are of interest– mean and variance. Our goal

is to hypothesize about each of these parameters in two distinct settings: comparing

an estimator with analytically obtained results and comparing two estimators (one-

and two- sample tests). We address each of the four different combinations of problems

describing the null hypotheses and describe the corresponding well-known statistical

tests.
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5.4 Applications in image synthesis

In this section, we present a few applications in Monte Carlo image synthesis where

hypothesis testing can be used to assess estimators. The goal is to verify that the

results of hypothesis testing are consistent with theoretical predictions. Thus, we

consider scenarios that are well understood and present hypotheses that are already

known to be true (or false) to the hypothesis testing framework and record whether

they are accepted (or rejected).

5.4.1 Irradiance

Consider the irradiance at a point x with normal n due to a triangular uniform, lam-

beritian emitter in the absence of occluders. The existence of an analytical solution,

commonly known as Lambert’s formula [6], combined with the availability of several

MC solutions for comparison make this problem a good candidate for a case study.

The irradiance at point x is given by

Epxq � »
H2

Lpx, ωqpn � ωq dω, (5.14)

where Lpx, ωq is the incident radiance at a along ω and H2 is the hemisphere of

directions defined by n. Epxq is estimated using the following methods:

1. Estimator U : uniformly sampling the hemisphere of directions and averaging

the cosine weighted incident radiance along those directions.

2. Estimator C: sampling the projected hemisphere and averaging the incident

radiance along those directions.

156



α � 0.1 α � 0.05 α � 0.01

Figure 5.3: Results from testing four estimators (see Section 5.4.1) to compare their
means and variances. Rows and columns in each matrix of plots correspond to esti-
mators U , C, A and S respectively. Frequencies of the results “less than”, “equal
to” and “greater than” for 2-sample mean (red) and variance (blue) tests are shown
in each cell of the matrix from a sequence of 100 runs of each. The results clearly
confirm that the means of all the estimators are equal and that σU ¡ σC ¡ σA ¡ σS.
The diagonals correspond to testing an estimator against itself and, as expected, the
mean and variance tests report equality. For lower values of α, there are fewer false
rejections. Observe that there is no clear winner in the test for variance between U

and C but on average σU ¡ σC .

3. Estimator A: sampling the area of the triangle uniformly and averaging the

estimates of irradiance due to each individual area element.

4. Estimator S: uniformly sampling the solid angle subtended by the triangle and

averaging the estimates of irradiance along each direction.

We compare means and variances of the above estimators against each other and also

compare against the analytical mean obtained using Lambert’s formula. The tests

are valid in this setting because the secondary estimators for the above yield roughly

normal distributions (see Figure 5.2). Thus, each of the tests is repeated a number

of times and the average result is reported. All the above estimators are known to

be unbiased and the mean tests confirm this on average. We observe that sometimes,

depending on the data, the mean test fails. By reducing the value of α, we can verify

that the failures approximately correspond to false rejections allowed by the factor

α. The result of the variance tests confirm that on average, σU ¡ σC ¡ σA ¡ σS (see
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Figure 5.3).

5.4.2 Verifying sampling distributions

One of the many desirable properties of a BRDF is its suitability to be used in a

MC rendering setup. This usually involves being able to sample from the reflectance

function or an approximation of this function. In the latter case, so long as the exact

density associated with each direction in the sample is known there is no risk of

introducing a bias while estimating reflected radiance using the sample, regardless of

how weak the approximation. However, the closer the approximation, the lower the

variance in the estimated reflected radiance.

The goal of this case study is to use two popular BRDF models proposed by Ashikhmin

and Shirley [11] and Ward [117, 113] and test whether the distributions sampled by

the two techniques significantly differ from their corresponding reflectance functions.

We select an input direction arbitrarily and obtain a sample containing many output

directions according to the BRDF. We bin these samples and visualize the 2D his-

togram as a greyscale image where image intensity is proportional to bin frequency.

For comparison, we visualize the histograms obtained by sampling each BRDF using

rejection sampling. The test is set up so that the size of the sample obtained using

rejection is equal to the size of the sample obtained by sampling the BRDF.

Visual inspection of the histograms is sufficient (see Figure 5.4) to assert that the

sampling of the Ward’s BRDF does not match the actual reflectance distribution. In

the case of the Ashikhmin-Shirley BRDF however, it is not obvious. To assess the

Ashikhmin-Shirley BRDF sampling algorithm we use the 2-sample GoF test. Since

the test is applicable only to univariate distributions and we have a 2D distribution

for a fixed outgoing direction, we linearize this 2D space by using a space filling curve
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Figure 5.4: Histograms of sample directions for two anisotropic BRDF’s (Ward and
Ashikhmin-Shirley) are shown, for a given outgoing direction. Multiple peaks are
observed due to the anisotropy. Rows and columns in the image correspond to polar
and azimuthal angles respectively. Sampling from the reflectance distribution (left) vs
sampling using rejection (right) is shown. While it is evident that the distributions
do not match for Ward’s BRDF (top row), it is not obvious from visual inspection
if the two samples for the Ashikhmin-Shirley BRDF (bottom row) represent the same
distribution.
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such as Morton-order [108].

Since the GoF test is not a parametric test, we do not make any assumptions about

the distribution other than that it is continuous [11]. Also since we can afford to

repeat the experiment multiple times, two of the three major limitations of the K-S

test are no longer major concerns in our application. The third limitation of the K-S

test suggests that it will be less likely to detect sampling anomalies near the pole

or near the horizon. We show that this is not a major concern in practice. If need

be this decreased sensitivity to the tails may be made insignificant by adopting a

parameterization scheme for the BRDF such as the half-angle parameterization [90]

in conjunction with a linearization scheme, thus keeping the interesting changes of

the BRDF in the middle of the distribution. The fact that the K-S test does not

make assumptions about the distribution from which the samples are drawn is key.

The results of the 2-sample K-S test for a sample directly drawn from Ward’s BRDF

against one drawn using rejection failed for all levels of significance and any numbers of

samples drawn. On the other hand, a similar test for the Ashikhmin-Shirley BRDF

passed with α � 0.005 for a sample size of less than 100. For larger samples the

Ashikhmin-Shirley BRDF failed the test indicating that the distribution being drawn

from does not match the reflectance distribution exactly. This is consistent with the

sampling technique [11] which derives the scheme for a distribution that is very close

to the reflectance function but not identical.

5.4.3 Detecting Errors

One of the applications of the hypothesis testing approaches we have described is

catching unintended sources of bias, and determining whether an experimental vari-

ance reduction technique is in fact effective.
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It is difficult to construct low-variance estimators that remain unbiased, either because

of the intrinsic difficulty of correctly normalizing the probability density functions,

or simply because they are prone to error. For example a factor of π, a missing

cosine factor or an incorrect change of variables (e.g. cosine over distance squared)

will lead to erroneous results that nevertheless look plausible and may therefore go

unnoticed. Indeed, many sources of bias would be nearly impossible to detect with-

out an objective comparison against either an analytic solution, or a trusted Monte

Carlo estimator. For example, if stratified sampling over a 2-manifold is used with

a mapping that is not uniform (i.e. a mapping that does not map equal areas in the

parameter domain to equal areas on the manifold), there will be a systematic bias

unless the strata are weighted according to their respective areas. Similarly, if sam-

ples are used both to estimate the mean and to guide adaptive sampling, the result

is systematically biased downward [57]. In both cases, the bias may be arbitrarily

large, yet offers no obvious visual clue of its existence. Such errors are relatively easy

to catch with hypothesis testing.

We intentionally introduced three common unintended sources of bias in the estimator

A (see Section 5.4.1) and verified that they could be detected by using the tests

described in Section 5.2. In constructing A, Equation (5.14) is rewritten, using a

change of variables, as

Epxq � »
Areap△q Lpx, zqn � z}z} n△ � z}z}3 dy (5.15)

where the integral is now over the area of the triangle as opposed to the sphere of

directions, with y as the variable of integration. n△ is the triangle’s normal and

z � x � y is a vector along ω. The term pn△ � z{}z}3q is a factor that appears in

the integral due to the change of variables. Specifically, we made the following three
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a) b)

c) d)

Figure 5.5: Results of the 2-sample tests comparing the mean of an estimator against
a trusted estimator before and after three errors were introduced in the former. The
tests were performed with α � 0.01 to verify that the difference in means after intro-
duction of the errors was detectable. Images generated using the erroneous estimators
are shown for a scene with shiny, textured and glossy (Ward’s BRDF) spheres. a)
Before introducing errors b) Missing cosine term; c) Non-uniform sampling of the
illuminaire; d) Incorrect change of variables in Equation (5.15). The errors are not
always obvious from just visual inspection.

alterations

1. Omitting the cosine term pn � z{}z}q in Equation (5.15)

2. Non-uniform sampling of the area of the triangle by using uniform random

variables in r0, 1s as barycentric coordinates.

3. Incorrect change of variables by omitting the pn△ � z{}z}3q in Equation (5.15).

All three errors were promptly detected by running the 2-sample test for means when

tested against the unmodified trusted estimator S (see Figure 5.5).
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Chapter 6

Conclusion

6.1 Summary

In Chapter 2, we derived a closed-form parameterization that allowed the genera-

tion of stratified samples according to a linear density function with triangular and

tetrahedral support. The parameterization was constructed so that its Jacobian de-

terminant is proportional to the density. Thus the stratification problem was reduced

to one of inverting quadratic and cubic equations.

In Chapter 3, we described a new importance sampling strategy with the novel ability

to draw samples from a dynamic steerable importance function. The steerability of

the importance function restricted the generated samples to regions where the steer-

ing function is non-zero. We demonstrated its effectiveness in the context of direct

illumination from distant light sources, where the incident all-frequency illumination

is steered by a dynamically orientable positive cosine lobe that is a function of the lo-

cal normal. The results clearly indicated the benefit of the technique, espcially when

shading regions with normals pointing away from the bright portions of the incident
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illumination.

In Chapter 4, we performed a Fourier analysis of finite aperture cameras and the depth

of field effect in terms of operators that described light transport in the frequency

domain light. The algorithm that we derived from this analysis showed a significant

improvement over current techniques that correctly account for visibility.

Finally, in Chapter 5, we discussed a novel adaptation of standard statistical hy-

pothesis tests for assessing and comparing Monte Carlo estimators. We showed that

this framework could be used to make assertions about the means and/or variances

of Monte Carlo estimators in image synthesis, upto a chosen level of significance.

We verified that the inferences made using the framework, by comparison against

standard, known results.

6.2 Future work

The stratification theory presented in Chapter 2 suggests that there is much to be ex-

plored. Stratified sampling research in image synthesis has been restricted to jittered

sampling and developing suitable stratification schemes. The true benefit of stratifica-

tion is realized as a combination of the stratification and allocation schemes. Optimal

and cost-evaluated allocation schemes could significantly improveme the overall sam-

pling efficiency.

The use of steerable importance sampling needs to be explored for other problems than

direct illumination. The general notion of a dynamically varying importance function

whose integral can be computed in constant time seems powerful enough for general

use. One important consideration would be the representation for the functionals in

the parameterized probability tree. A natural extension of the application presented
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in Chapter 3 would be to include the reflectance function in the steering function.

Bandwidth prediction provides several key insights into functions that allows for

efficient sampled representation and for deciding allocation schemes. The frequency

propagation scheme—using sampled spectra—discussed in Chapter 4 needs to be

explored for other applications than depth of field. The main challenge to be overcome

seems to be that of efficiently and accurately representing occluder spectra although

accuracy may not be an issue for conservative bandwidth prediction. The possible

use of conservatively predicted bandwidth for driving allocation schemes for sampling

indirect illumination seems exciting.

Although we have presented statistical hypothesis tests as a tool for assessing Monte

Carlo estimators (see Chapter 5), it would be interesting to explore the potential

utility of other sysems of inductive inference.
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